Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/9644
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelik Yılmaz, Aslı | - |
dc.contributor.author | Turksen, I. Burhan | - |
dc.date.accessioned | 2022-12-25T20:43:04Z | - |
dc.date.available | 2022-12-25T20:43:04Z | - |
dc.date.issued | 2008 | - |
dc.identifier.issn | 1083-4419 | - |
dc.identifier.issn | 1941-0492 | - |
dc.identifier.uri | https://doi.org/10.1109/TSMCB.2008.924587 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/9644 | - |
dc.description.abstract | This paper introduce a type-2 fuzzy function system for uncertainty modeling using evolutionary algorithms (ET2FF). The type-1 fuzzy inference systems (FISs) with fuzzy functions, which do not entail if ... then rule bases, have demonstrated better performance compared to traditional FIS. Nonetheless, the performance of these approaches is usually affected by their uncertain parameters. The proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy function systems induced by learning parameters, as well as fuzzy function structures. The improved fuzzy clustering initially finds hidden structures, and the genetic learning algorithm optimizes interval type-2 fuzzy sets to capture their optimum uncertainty interval. The proposed ET2FF architecture is evaluated using an extensive suite of real-life applications such as manufacturing process and financial market modeling. The results show that the proposed ET2FF method is comparable-if not superior-to earlier FIS in terms of generalization performance and robustness. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | type-2 fuzzy functions | en_US |
dc.subject | uncertainty modeling | en_US |
dc.title | Uncertainty Modeling of Improved Fuzzy Functions With Evolutionary Systems | en_US |
dc.type | Article | en_US |
dc.department | ESTÜ | en_US |
dc.identifier.volume | 38 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 1098 | en_US |
dc.identifier.endpage | 1110 | en_US |
dc.identifier.wos | WOS:000258183100027 | - |
dc.institutionauthor | [Belirlenecek] | - |
dc.identifier.pmid | 18632400 | - |
dc.identifier.doi | 10.1109/TSMCB.2008.924587 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman | en_US |
dc.identifier.scopusquality | N/A | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 02.4. Department of Industrial Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
35
checked on Jan 4, 2025
WEB OF SCIENCETM
Citations
30
checked on Dec 21, 2024
Page view(s)
42
checked on Jan 6, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.