Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9644
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelik Yılmaz, Aslı-
dc.contributor.authorTurksen, I. Burhan-
dc.date.accessioned2022-12-25T20:43:04Z-
dc.date.available2022-12-25T20:43:04Z-
dc.date.issued2008-
dc.identifier.issn1083-4419-
dc.identifier.issn1941-0492-
dc.identifier.urihttps://doi.org/10.1109/TSMCB.2008.924587-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9644-
dc.description.abstractThis paper introduce a type-2 fuzzy function system for uncertainty modeling using evolutionary algorithms (ET2FF). The type-1 fuzzy inference systems (FISs) with fuzzy functions, which do not entail if ... then rule bases, have demonstrated better performance compared to traditional FIS. Nonetheless, the performance of these approaches is usually affected by their uncertain parameters. The proposed method implements a three-phase learning strategy to capture the uncertainties in fuzzy function systems induced by learning parameters, as well as fuzzy function structures. The improved fuzzy clustering initially finds hidden structures, and the genetic learning algorithm optimizes interval type-2 fuzzy sets to capture their optimum uncertainty interval. The proposed ET2FF architecture is evaluated using an extensive suite of real-life applications such as manufacturing process and financial market modeling. The results show that the proposed ET2FF method is comparable-if not superior-to earlier FIS in terms of generalization performance and robustness.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions on Systems Man and Cybernetics Part B-Cyberneticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttype-2 fuzzy functionsen_US
dc.subjectuncertainty modelingen_US
dc.titleUncertainty Modeling of Improved Fuzzy Functions With Evolutionary Systemsen_US
dc.typeArticleen_US
dc.departmentESTÜen_US
dc.identifier.volume38en_US
dc.identifier.issue4en_US
dc.identifier.startpage1098en_US
dc.identifier.endpage1110en_US
dc.identifier.wosWOS:000258183100027-
dc.institutionauthor[Belirlenecek]-
dc.identifier.pmid18632400-
dc.identifier.doi10.1109/TSMCB.2008.924587-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanen_US
dc.identifier.scopusqualityN/A-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

35
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

30
checked on Dec 21, 2024

Page view(s)

42
checked on Jan 6, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.