Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9181
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKosova, Furkan-
dc.contributor.authorUnver, Hakki Ozgur-
dc.date.accessioned2022-11-30T19:36:12Z-
dc.date.available2022-11-30T19:36:12Z-
dc.date.issued2023-
dc.identifier.issn0954-4062-
dc.identifier.issn2041-2983-
dc.identifier.urihttps://doi.org/10.1177/09544062221132697-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9181-
dc.description.abstractSince the last decade, aircraft systems, such as flight control and landing gear, have been requiring increasing power, and consequently, the complexity of hydraulic aircraft systems has escalated. Inevitably, this complexity has resulted in the need for the troubleshooting of hydraulic aircraft systems that are dispersed around an aircraft and supply power to critical flight systems. This study proposes a novel digital twin-based health monitoring system for aircraft hydraulic systems to enable diagnostics of system failures early in the design cycle using machine learning (ML) methods. The scope of the systems is limited to hydraulic systems at the aircraft level using 20 failure scenarios. The support vector machine and several ensemble learning algorithms of ML methods were used to identify these failures. A comparison of the ML methods revealed that the random forest algorithm performed superior to the other ML algorithms. The developed digital twin framework for hydraulic system of aerial vehicle platforms, can help researchers and engineers to evaluate diagnostics systems early in the design phase.en_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofProceedings of The Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDigital twinen_US
dc.subjectaircraft hydraulicsen_US
dc.subjectfailure detectionen_US
dc.subjectSVMen_US
dc.subjectensemble learningen_US
dc.subjectFault-Diagnosisen_US
dc.subjectData-Drivenen_US
dc.subjectClassificationen_US
dc.titleA Digital Twin Framework for Aircraft Hydraulic Systems Failure Detection Using Machine Learning Techniquesen_US
dc.typeArticleen_US
dc.identifier.wosWOS:000878349100001en_US
dc.identifier.scopus2-s2.0-85141409916en_US
dc.institutionauthorÜnver, Hakki Özgür-
dc.identifier.doi10.1177/09544062221132697-
dc.authorscopusid57955774000-
dc.authorscopusid6603873269-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.ozel2022v3_Editen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

12
checked on Dec 21, 2024

Page view(s)

188
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.