Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9095
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYazlak, Mustafa Goekturk-
dc.contributor.authorKhan, Qaiser Ali-
dc.contributor.authorSteinhart, Martin-
dc.contributor.authorDuran, Hatice-
dc.date.accessioned2022-11-30T19:27:46Z-
dc.date.available2022-11-30T19:27:46Z-
dc.date.issued2022-
dc.identifier.issn2470-1343-
dc.identifier.urihttps://doi.org/10.1021/acsomega.2c02536-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9095-
dc.descriptionArticle; Early Accessen_US
dc.description.abstractHybrids of nitrate-based molten salts (KNO3, NaNO3, and Solar Salt) and anodic aluminum oxide (AAO) with various pore sizes (between 25 and 380 nm) were designed for concentrated solar power (CSP) plants to achieve low melting point (< 200 degrees C) and high thermal conductivity (> 1 W m(-1) K-1). AAO pore surfaces were passivated with octadecyl phosphonic acid (ODPA), and the results were compared with as-anodized AAO. The change in phase transition temperatures and melting temperatures of salts was investigated as a function of pore diameter. Melting temperatures decreased for all salts inside AAO with different pore sizes while the highest melting temperature decrease (delta T = 173 +/- 2 degrees C) was observed for KNO3 filled in AAO with a pore diameter of 380 nm. Another nanoconfinement effect was observed in the crystal phases of the salts. The ferroelectric phase of KNO3 (gamma-phase) formed at room temperature for KNO3/ AAO hybrids with pore size larger than 35 nm. Thermal conductivity values of molten salt (MS)/AAO hybrids were obtained by thermal property analysis (TPS) at room temperature and above melting temperatures of the salts. The highest increase in thermal conductivity was observed as 73% for KNO3/AAO-35 nm. For NaNO3/AAO-380 nm hybrids, the thermal conductivity coefficient was 1.224 +/- 0.019 at room temperature. To determine the capacity and efficiency of MS/AAO hybrids during the heat transfer process, the energy storage density per unit volume (J m(-3)) was calculated. The highest energy storage capacity was calculated as 2390 MJ m(-3) for KNO3/AAO with a pore diameter of 400 nm. This value is approximately five times higher than that of bulk salt.en_US
dc.description.sponsorshipTUBITAK [118M582]en_US
dc.description.sponsorshipH.D. and M.G.Y. gratefully acknowledge TUBITAK for the financial support of the 118M582 project.en_US
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.relation.ispartofAcs Omegaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThermal-Conductivityen_US
dc.subjectPotassium-Nitrateen_US
dc.subjectThermophysical Propertiesen_US
dc.subjectSurface-Tensionen_US
dc.subjectPorous Aluminaen_US
dc.subjectCrystallizationen_US
dc.subjectConfinementen_US
dc.subjectGrowthen_US
dc.subjectPharmaceuticalsen_US
dc.subjectNucleationen_US
dc.titleMelting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinementen_US
dc.typeArticleen_US
dc.authoridSteinhart, Martin/0000-0002-5241-8498-
dc.authoridDuran, Hatice/0000-0001-6203-3906-
dc.authoridDuran, Hatice/0000-0001-6203-3906-
dc.authoridYazlak, Mustafa Gokturk/0000-0003-1872-7075-
dc.identifier.wosWOS:000828150500001en_US
dc.identifier.scopus2-s2.0-85135220245en_US
dc.institutionauthorDuran Durmus, Hatice-
dc.identifier.pmid35874251en_US
dc.identifier.doi10.1021/acsomega.2c02536-
dc.authorwosidSteinhart, Martin/B-7811-2011-
dc.authorwosidDuran, Hatice/AAD-6128-2019-
dc.authorwosidDuran, Hatice/B-1423-2009-
dc.authorscopusid57433266700-
dc.authorscopusid57222355568-
dc.authorscopusid7003603466-
dc.authorscopusid25633500900-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.ozel2022v3_Editen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Nov 9, 2024

Page view(s)

98
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.