Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9080
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorusdag, M. Bugraen_US
dc.contributor.authorKutlu, Mucahiden_US
dc.contributor.authorSelçuk, Ali Aydınen_US
dc.date.accessioned2022-11-30T19:27:44Z-
dc.date.available2022-11-30T19:27:44Z-
dc.date.issued2022-
dc.identifier.issn1300-0632-
dc.identifier.issn1303-6203-
dc.identifier.urihttps://doi.org/10.55730/1300-0632.3848-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/533998-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9080-
dc.description.abstractSocial bots are employed to automatically perform online social network activities; thereby, they can also be utilized in spreading misinformation and malware. Therefore, many researchers have focused on the automatic detection of social bots to reduce their negative impact on society. However, it is challenging to evaluate and compare existing studies due to difficulties and limitations in sharing datasets and models. In this study, we conduct a comparative study and evaluate four different bot detection systems in various settings using 20 different public datasets. We show that high-quality datasets covering various social bots are critical for a reliable evaluation of bot detection methods. In addition, our experiments suggest that Botometer is preferable to others in order to detect social bots.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [ARDEB 3501, 120E514]en_US
dc.description.sponsorshipThis study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 3501 Grant No 120E514. The statements made herein are solely the responsibility of the authors.en_US
dc.language.isoenen_US
dc.publisherScientific And Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTwitteren_US
dc.subjectSocial Bot Detectionen_US
dc.subjectEvaluationen_US
dc.subjectReproducibilityen_US
dc.subjectNetworksen_US
dc.subjectDesignen_US
dc.titleEvaluation of Social Bot Detection Modelsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.volume30en_US
dc.identifier.issue4en_US
dc.identifier.startpage1269en_US
dc.identifier.endpage1283en_US
dc.identifier.wosWOS:000806802400005en_US
dc.identifier.scopus2-s2.0-85132216625en_US
dc.institutionauthorKutlu, Mücahiden_US
dc.institutionauthorSelçuk, Ali Aydinen_US
dc.identifier.doi10.55730/1300-0632.3848-
dc.authorscopusid57749897900-
dc.authorscopusid35299304300-
dc.authorscopusid7004457288-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.trdizinid533998en_US
dc.ozel2022v3_Editen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Aug 31, 2024

Page view(s)

104
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.