Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9047
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamu, Palaniappan-
dc.contributor.authorThananjayan, Pugazhenthi-
dc.contributor.authorAcar, Erdem-
dc.contributor.authorBayrak, Gamze-
dc.contributor.authorPark, Jeong Woo-
dc.contributor.authorLee, Ikjin-
dc.date.accessioned2022-11-30T19:27:12Z-
dc.date.available2022-11-30T19:27:12Z-
dc.date.issued2022-
dc.identifier.issn1615-147X-
dc.identifier.issn1615-1488-
dc.identifier.urihttps://doi.org/10.1007/s00158-022-03369-9-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9047-
dc.description.abstractMachine Learning (ML) techniques have been used in an extensive range of applications in the field of structural and multidisciplinary optimization over the last few years. This paper presents a survey of this wide but disjointed literature on ML techniques in the structural and multidisciplinary optimization field. First, we discuss the challenges associated with conventional optimization and how Machine learning can address them. Then, we review the literature in the context of how ML can accelerate design synthesis and optimization. Some real-life engineering applications in structural design, material design, fluid mechanics, aerodynamics, heat transfer, and multidisciplinary design are summarized, and a brief list of widely used open-source codes as well as commercial packages are provided. Finally, the survey culminates with some concluding remarks and future research suggestions. For the sake of completeness, categories of ML problems, algorithms, and paradigms are presented in the Appendix.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofStructural and Multidisciplinary Optimizationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectClusteringen_US
dc.subjectDeep learningen_US
dc.subjectDesign diversityen_US
dc.subjectDimension reductionen_US
dc.subjectGenerative designen_US
dc.subjectMachine learningen_US
dc.subjectNeural networken_US
dc.subjectOptimizationen_US
dc.subjectReinforcement learningen_US
dc.subjectRegressionen_US
dc.subjectSuperviseden_US
dc.subjectunsupervised learningen_US
dc.subjectUncertaintyen_US
dc.subjectVariational autoencoderen_US
dc.subjectNeural-Networksen_US
dc.subjectUncertainty Quantificationen_US
dc.subjectDesign Optimizationen_US
dc.subjectSurrogate Modelsen_US
dc.subjectTopology Optimizationen_US
dc.subjectInverse Problemsen_US
dc.subjectFrameworken_US
dc.subjectEnsembleen_US
dc.subjectAlgorithmen_US
dc.titleA Survey of Machine Learning Techniques in Structural and Multidisciplinary Optimizationen_US
dc.typeReviewen_US
dc.identifier.volume65en_US
dc.identifier.issue9en_US
dc.identifier.wosWOS:000852375400001en_US
dc.identifier.scopus2-s2.0-85138265251en_US
dc.institutionauthorAcar, Erdem-
dc.identifier.doi10.1007/s00158-022-03369-9-
dc.authorscopusid18042509000-
dc.authorscopusid57894961900-
dc.authorscopusid55308448100-
dc.authorscopusid57190487667-
dc.authorscopusid57192419662-
dc.authorscopusid15073177700-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ1-
dc.ozel2022v3_Editen_US
item.openairetypeReview-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

21
checked on Nov 9, 2024

Page view(s)

140
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.