Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKocak, Yunuscan-
dc.contributor.authorOzyer, Tansel-
dc.date.accessioned2022-11-30T19:25:48Z-
dc.date.available2022-11-30T19:25:48Z-
dc.date.issued2021-
dc.identifier.issn1748-5673-
dc.identifier.issn1748-5681-
dc.identifier.urihttps://doi.org/10.1504/IJDMB.2021.124106-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8996-
dc.description.abstractEvaluating patient prognosis is prominent for predicting the effects and consequences of diseases. Systems can find interesting properties within a data set and predict unseen cases. Feature extraction and feature selection are the critical steps. In this work, a novel network-based feature extraction method is presented and tested on two cancer cases, namely (1) lung and bronchus cancer and (2) pancreatic cancer. Named as Signed Maximal Frequent Itemset Network, the proposed method uses maximal frequent itemsets as actors in a network and extracts features by considering their co-occurrence and structure of the sub-graph. To investigate patterns on prediction, the top ten maximal itemsets are selected with the recursive feature elimination method and their distributions are analysed. In conclusion, survival months are low when the information on the disease was unknown or blank, and higher in case chemotherapy was given and the primary site was labelled, such as head of the pancreas.en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltden_US
dc.relation.ispartofInternational Journal of Data Mining and Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcancer data analysisen_US
dc.subjectfrequent pattern miningen_US
dc.subjectmachine learningen_US
dc.subjectnetwork analysisen_US
dc.subjectsigned networksen_US
dc.subjectmaximal frequent itemsetsen_US
dc.subjectfeature selectionen_US
dc.subjectlung canceren_US
dc.subjectpancreatic canceren_US
dc.subjectClassificationen_US
dc.subjectPredictionen_US
dc.titleAnalysing Seer Cancer Data Using Signed Maximal Frequent Itemset Networksen_US
dc.typeArticleen_US
dc.identifier.volume26en_US
dc.identifier.issue1.Şuben_US
dc.identifier.startpage20en_US
dc.identifier.endpage58en_US
dc.identifier.wosWOS:000824618600002en_US
dc.identifier.scopus2-s2.0-85134549109en_US
dc.identifier.doi10.1504/IJDMB.2021.124106-
dc.authorscopusid57192301199-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.ozel2022v3_Editen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

132
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.