Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8947
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGorguluarslan, Recep M.-
dc.contributor.authorAtes, Gorkem Can-
dc.contributor.authorGungor, O. Utku-
dc.contributor.authorYamaner, Yusuf-
dc.date.accessioned2022-11-30T19:24:49Z-
dc.date.available2022-11-30T19:24:49Z-
dc.date.issued2021-
dc.identifier.isbn9780791885376-
dc.identifier.urihttps://doi.org/10.1115/DETC2021-69985-
dc.descriptionComputers and Information in Engineering Division;Design Engineering Division; 41st Computers and Information in Engineering Conference, CIE 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021 -- 17 August 2021 through 19 August 2021 -- -- 174204en_US
dc.description.abstractAdditive manufacturing introduces geometric uncertainties on the fabricated strut members of lattice structures. These uncertainties lead to deviations between the simulation result and the fabricated mechanical performance. Although these uncertainties can be characterized and quantified in the existing literature, the generation of a high number of samples for the quantified uncertainties to use in the computer-aided design of lattice structures for different strut diameters and angles requires high experimental effort and computational cost. The use of deep neural network models to accurately predict the samples of uncertainties is studied in this research to address this issue. For the training data, the geometric uncertainties on the fabricated struts introduced by the material extrusion process are characterized from microscope measurements using random field theory. These uncertainties are propagated to effective diameters of the strut members using a stochastic upscaling technique. The relationship between the deterministic strut model parameters, namely the model diameter and angle, and the effective diameter with propagated uncertainties is established through a deep neural network model. The validation data results show accurate predictions for the effective diameter when model parameters are given as inputs. Thus, the proposed model has the potential to use the fabricated results in the design optimization processes without requiring computationally expensive repetitive simulations.en_US
dc.description.sponsorshipTurkish Science and Research Council (TUBITAK) [118M715]en_US
dc.description.sponsorshipThe authors acknowledge the funding provided by the Turkish Science and Research Council (TUBITAK) by project number 118M715.en_US
dc.language.isoenen_US
dc.publisherAmer Soc Mechanical Engineersen_US
dc.relation.ispartofASME International Design Engineering Technical Conferences / 41st Computers and Information in Engineering Conference (IDETC-CIE) -- AUG 17-19, 2021 -- ELECTR NETWORKen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMaterial Extrusionen_US
dc.subjectLattice Structureen_US
dc.subjectDeep Neural Networken_US
dc.subjectUncertaintyen_US
dc.titleStrut Diameter Uncertainty Prediction by Deep Neural Network for Additively Manufactured Lattice Structuresen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume2en_US
dc.identifier.wosWOS:001224343100039-
dc.identifier.scopus2-s2.0-85119973920-
dc.institutionauthorGorguluarslan, Recep M.-
dc.identifier.doi10.1115/DETC2021-69985-
dc.authorwosidGorguluarslan, Recep/Aag-3572-2019-
dc.authorscopusid56076567200-
dc.authorscopusid57221393471-
dc.authorscopusid57218826262-
dc.authorscopusid57354674000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.ozel2022v3_Editen_US
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Sep 6, 2025

Page view(s)

234
checked on Sep 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.