Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8941
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGençog?lu C.-
dc.contributor.authorTekog?lu C.-
dc.contributor.authorAyas C.-
dc.date.accessioned2022-11-30T19:23:58Z-
dc.date.available2022-11-30T19:23:58Z-
dc.date.issued2022-
dc.identifier.issn0020-7683-
dc.identifier.urihttps://doi.org/10.1016/j.ijsolstr.2022.111779-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8941-
dc.description.abstractThe effects of five different types of imperfection (fractured cell walls, missing cells, cell wall waviness, cell wall misalignment, and non-uniform cell wall thickness) on actuation performance are numerically investigated for the Kagome lattice and two of its variants: Double Kagome (DK) and Kagome with concentric triangles (KT). The lattice materials of interest are excited by deploying a single linear actuator located at their centre. The actuation performance of the lattices is determined by measuring the energy spent by the actuator and the attenuation distance of the deformation induced by the actuator. The deformation localises in a narrow corridor approximately one unit cell-wide for all three lattices in the absence of imperfections. The finite element calculations show that the critical parameter determining the actuation performance is the stiffness along the actuation corridor rather than the macroscopic Young's modulus of the lattice. The less stiff the actuation corridor is, the smaller the actuation energy and the larger the attenuation distance (except when there is a fractured or wavy cell wall or a missing cell along the actuation corridor that immediately attenuates the displacement field). When imperfections are randomly distributed outside the actuation corridor, cell wall misalignment and non-uniform cell wall thickness barely affect the actuation performance, although cell wall misalignment considerably reduces the macroscopic Young's modulus of the lattice. The actuator feels the presence of fractured or wavy cell walls or missing cells, whether placed inside or outside the actuation corridor. These three types of imperfection cause the largest knock-down both in the macroscopic Young's modulus of the block and the actuation energy while increasing the attenuation distance. The increase in the attenuation distance due to imperfections is, however, impotent, as the accompanying reduction in stiffness makes the lattice more vulnerable to failure. However, if a defect is introduced slightly beyond the attenuation distance of the perfect lattice as an intentional design feature, it is beneficial for the actuation performance without decreasing the macroscopic Young's modulus. © 2022 Elsevier Ltden_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 219M296en_US
dc.description.sponsorshipThe authors gratefully acknowledge the financial support by TÜBİTAK (The Scientific and Technological Research Council of Turkey, Project Title: Design of New Multi-Functional Lattice Materials; Project No: 219M296 ).en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Solids and Structuresen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActuationen_US
dc.subjectFinite element analysisen_US
dc.subjectLattice materialsen_US
dc.subjectMechanical propertiesen_US
dc.subjectMorphing structuresen_US
dc.subjectAlignmenten_US
dc.subjectBiomechanicsen_US
dc.subjectCellsen_US
dc.subjectCytologyen_US
dc.subjectDeformationen_US
dc.subjectElastic modulien_US
dc.subjectFractureen_US
dc.subjectLinear actuatorsen_US
dc.subjectStiffnessen_US
dc.subjectActuationen_US
dc.subjectCell wallsen_US
dc.subjectCell-wall thicknessen_US
dc.subjectFinite element analyseen_US
dc.subjectLattice materialsen_US
dc.subjectMorphing structuresen_US
dc.subjectNon-uniformen_US
dc.subjectPerformanceen_US
dc.subjectUniform cellsen_US
dc.subjectYoung modulusen_US
dc.subjectFinite element methoden_US
dc.titleEffect of Imperfections on the Actuation Performance of Lattice Materialsen_US
dc.typeArticleen_US
dc.identifier.volume252en_US
dc.identifier.wosWOS:001309998900001en_US
dc.identifier.scopus2-s2.0-85132754515en_US
dc.institutionauthorTekoglu, Cihan-
dc.identifier.doi10.1016/j.ijsolstr.2022.111779-
dc.authorscopusid41461336900-
dc.authorscopusid35320237300-
dc.authorscopusid25926873700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.ozel2022v3_Editen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

82
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.