Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdem M.-
dc.contributor.authorKoç Ç.-
dc.contributor.authorYücel E.-
dc.date.accessioned2022-11-30T19:23:57Z-
dc.date.available2022-11-30T19:23:57Z-
dc.date.issued2022-
dc.identifier.issn0360-8352-
dc.identifier.urihttps://doi.org/10.1016/j.cie.2022.108580-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8933-
dc.description.abstractThis paper introduces the electric home health care routing and scheduling problem with time windows and fast chargers. The problem aims to construct the daily routes of health care nurses so as to provide a series of services to the patients located at a scattered area. The problem minimizes the total cost, which comprises of total traveling cost of electric vehicles, total cost of uncovered jobs, and total costs of recharged energy. We develop an adaptive large neighborhood search heuristic, which contains a number of advanced efficient procedures tailored to handle specific features of the problem. The paper conducts extensive computational experiments on generated benchmark instances and assesses the competitiveness of the heuristic. Results show that the heuristic is highly effective on the problem. Our analyses quantify the advantages of considering all charger technologies, i.e., normal, fast- and super-fast. We show that the downgrading of competence levels of jobs yields an improvement in total cost. © 2022 Elsevier Ltden_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 119M007en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant number 119M007 . This support is gratefully acknowledged.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputers and Industrial Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive large neighborhood searchen_US
dc.subjectElectric vehiclesen_US
dc.subjectHome health care servicesen_US
dc.subjectVehicle routingen_US
dc.subjectBenchmarkingen_US
dc.subjectCharging (batteries)en_US
dc.subjectElectric vehiclesen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectHome health careen_US
dc.subjectOptimizationen_US
dc.subjectVehicle routingen_US
dc.subjectAdaptive large neighborhood searchesen_US
dc.subjectEnergyen_US
dc.subjectFast chargersen_US
dc.subjectHealthcare servicesen_US
dc.subjectHome health care serviceen_US
dc.subjectRouting and schedulingen_US
dc.subjectRouting problemsen_US
dc.subjectScheduling problemen_US
dc.subjectSearch heuristicsen_US
dc.subjectTime windowsen_US
dc.subjectSchedulingen_US
dc.titleThe Electric Home Health Care Routing and Scheduling Problem With Time Windows and Fast Chargersen_US
dc.typeArticleen_US
dc.identifier.volume172en_US
dc.identifier.wosWOS:000864653000007en_US
dc.identifier.scopus2-s2.0-85136689202en_US
dc.institutionauthorYücel, Eda-
dc.identifier.doi10.1016/j.cie.2022.108580-
dc.authorscopusid57189599254-
dc.authorscopusid56399128200-
dc.authorscopusid24773991000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.ozel2022v3_Editen_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

10
checked on Dec 21, 2024

Page view(s)

90
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.