Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8811
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Acikalin U.U. | - |
dc.contributor.author | Caskurlu B. | - |
dc.date.accessioned | 2022-11-30T19:20:50Z | - |
dc.date.available | 2022-11-30T19:20:50Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 9.78145E+12 | - |
dc.identifier.uri | https://doi.org/10.1145/3520304.3529050 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8811 | - |
dc.description | ACM SIGEVO | en_US |
dc.description | 2022 Genetic and Evolutionary Computation Conference, GECCO 2022 -- 9 July 2022 through 13 July 2022 -- -- 181031 | en_US |
dc.description.abstract | The Hypergraph Partitioning (HGP) problem is a well-studied problem that finds applications in a variety of domains. In several application domains, such as the VLSI design and database migration planning, the quality of the solution is more of a concern than the running time of the algorithm. In this work, we introduce novel problem-specific recombination and mutation operators and develop a new multilevel memetic algorithm by combining these operators with kKaHyPar-E. The performance of our algorithm is compared with the state-of-the-art HGP algorithms on 150 real-life instances taken from the benchmark sets used in the literature. The experiments reveal that our algorithm outperforms all others, and finds the best solutions in 112, 115, and 125 instances in 2, 4, and 8 hours, respectively. © 2022 Owner/Author. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Association for Computing Machinery, Inc | en_US |
dc.relation.ispartof | GECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | memetic algorithms | en_US |
dc.subject | multilevel hypergraph partitioning | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Applications domains | en_US |
dc.subject | Database migrations | en_US |
dc.subject | Hypergraph partitioning | en_US |
dc.subject | Memetic | en_US |
dc.subject | Memetic algorithms | en_US |
dc.subject | Migration planning | en_US |
dc.subject | Multilevel hypergraph partitioning | en_US |
dc.subject | Multilevels | en_US |
dc.subject | Partitioning problem | en_US |
dc.subject | VLSI design | en_US |
dc.subject | Benchmarking | en_US |
dc.title | Multilevel Memetic Hypergraph Partitioning With Greedy Recombination | en_US |
dc.type | Conference Object | en_US |
dc.identifier.startpage | 168 | en_US |
dc.identifier.endpage | 171 | en_US |
dc.identifier.wos | WOS:001035469400062 | en_US |
dc.identifier.scopus | 2-s2.0-85136331557 | en_US |
dc.identifier.doi | 10.1145/3520304.3529050 | - |
dc.authorscopusid | 35309348400 | - |
dc.authorscopusid | 35104543000 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.ozel | 2022v3_Edit | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Sep 21, 2024
Page view(s)
68
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.