Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtes G.C.-
dc.contributor.authorDemirtunç M.-
dc.contributor.authorGöçer A.C.-
dc.contributor.authorDoğru A.H.-
dc.contributor.authorGörgülüarslan, Recep Muhammet-
dc.contributor.authorGökdağ İ.-
dc.contributor.authorYavaş H.-
dc.date.accessioned2022-07-30T16:45:45Z-
dc.date.available2022-07-30T16:45:45Z-
dc.date.issued2021-
dc.identifier.citationAtes, G. C., Demirtunç, M., Göçer, A. C., Doğru, A. H., Gorguluarslan, R. M., Gökdağ, İ., & Yavaş, H. (2021, November). Design of a 3D Aerospace Bracket Using Lattice Structures and Topology Optimization for Additive Manufacturing. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85581, p. V004T04A010). American Society of Mechanical Engineers.en_US
dc.identifier.isbn9780791885581-
dc.identifier.urihttps://doi.org/10.1115/IMECE2021-71476-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8664-
dc.descriptionAmerican Society of Mechanical Engineers (ASME)en_US
dc.descriptionASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021 -- 1 November 2021 through 5 November 2021 -- -- 176672en_US
dc.description.abstractIn this study, a design optimization framework is presented that utilizes the topology and lattice structure optimization approaches to design an aerospace component for additive manufacturing (AM). In this framework, the topology optimization is first utilized to find the relative density distribution in the design space of the component that maximizes its stiffness under the volume and strength constraints. The optimized density distribution is used to generate an initial lattice structure topology. A two-step size optimization is also carried out using the beam element formulation in the FEA. The diameters of the strut members in the lattice structure are aimed to be kept within the manufacturability limits of the selective laser melting (SLM) process with AlSi10Mg alloy to satisfy the volume and stress constraints while maximizing the overall stiffness. Optimized designs are determined with four different lattice types. The best design among them is analyzed to ensure an additional natural frequency constraint using modal analysis. Thus, a novel lattice structure design is achieved that satisfies the strength and vibration-specific requirements of the aerospace component for a real-world application. The developed lattice structure design of the aerospace component is achieved with a 30% reduction in weight while still satisfying the desired requirements compared to the existing design in use. The presented lattice design optimization framework is presented in a way that is not application-specific so that it can also be used for the design of different components for AM. The future work includes experimental validation of the strength and vibration performances of the SLM-fabricated design. Copyright © 2021 by ASMEen_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.relation.ispartofASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdditive manufacturingen_US
dc.subjectAerospaceen_US
dc.subjectFinite element analysisen_US
dc.subjectLattice structureen_US
dc.subjectTopology optimizationen_US
dc.subject3D printersen_US
dc.subjectAdditivesen_US
dc.subjectAerospace engineeringen_US
dc.subjectModal analysisen_US
dc.subjectShape optimizationen_US
dc.subjectStiffnessen_US
dc.subjectStructural optimizationen_US
dc.subjectTopologyen_US
dc.subjectAerospace componentsen_US
dc.subjectDensity distributionsen_US
dc.subjectDesign optimizationen_US
dc.subjectFinite element analyseen_US
dc.subjectLattice structuresen_US
dc.subjectOptimization frameworken_US
dc.subjectSelective laser meltingen_US
dc.subjectStructure designen_US
dc.subjectStructure optimizationen_US
dc.subjectTopology optimisationen_US
dc.subjectFinite element methoden_US
dc.titleDesign Of A 3D Aerospace Bracket Using Lattice Structures And Topology Optımization For Additive Manufacturingen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.identifier.volume4en_US
dc.identifier.scopus2-s2.0-85124515138en_US
dc.institutionauthorGörgülüarslan, Recep Muhammet-
dc.identifier.doi10.1115/IMECE2021-71476-
dc.authorscopusid57221393471-
dc.authorscopusid57450241200-
dc.authorscopusid57450415200-
dc.authorscopusid57450963100-
dc.authorscopusid56076567200-
dc.authorscopusid57235527400-
dc.authorscopusid57512458100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

240
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.