Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8657
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ünver, Hakkı Özgür | - |
dc.contributor.author | Sener, Batihan | - |
dc.date.accessioned | 2022-07-30T16:43:44Z | - |
dc.date.available | 2022-07-30T16:43:44Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Unver, H. O., & Sener, B. (2022). Exploring the Potential of Transfer Learning for Chatter Detection. Procedia Computer Science, 200, 151-159. | en_US |
dc.identifier.issn | 1877-0509 | - |
dc.identifier.uri | https://doi.org/10.1016/j.procs.2022.01.214 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8657 | - |
dc.description | 3rd International Conference on Industry 4.0 and Smart Manufacturing (ISM) -- NOV 17-19, 2021 -- Upper Austria Univ Appl Sci, Hagenberg Campus, Linz, AUSTRIA | en_US |
dc.description.abstract | Chatter detection and avoidance are indispensable for many industries that rely on the machining process. The physics-based analytical models and recently successful machine learning methods can provide solutions using data from a unique setting. When the primary conditions of machining alter, new data needs to be collected, and analysis/training should be revised. Unfortunately, data collection is time-consuming and expensive for all machine learning applications. Therefore, broader applications of these methods are usually hindered at high production rate machining shops. Transfer learning aims to attenuate this critical barrier of machine learning implementations by transferring knowledge generated from a source domain to a different but related domain. As the concept has immense potential as an accelerator for machine learning applications, it has many prospects in Industry 4.0 framework. This article provides an introduction to transfer learning and briefly overviews its categorizations. Afterward, its potential for chatter detection is explored, and potential strategies are exemplified. Recent studies in the literature within the strategies are briefly presented as well. (C) 2022 The Authors. Published by Elsevier B.V. | en_US |
dc.description.sponsorship | TUBITAK (The Scientific and Technological Research Council of Turkey) [118M414] | en_US |
dc.description.sponsorship | This study is funded by TUBITAK (The Scientific and Technological Research Council of Turkey) through project grant no. 118M414. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | 3rd International Conference On Industry 4.0 and Smart Manufacturing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Transfer Learning | en_US |
dc.subject | Chatter | en_US |
dc.subject | Machining | en_US |
dc.subject | Machine Learning | en_US |
dc.title | Exploring the Potential of Transfer Learning for Chatter Detection | en_US |
dc.type | Conference Object | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Mechanical Engineering | en_US |
dc.identifier.volume | 200 | en_US |
dc.identifier.startpage | 151 | en_US |
dc.identifier.endpage | 159 | en_US |
dc.identifier.wos | WOS:000777601300016 | en_US |
dc.identifier.scopus | 2-s2.0-85127741220 | en_US |
dc.institutionauthor | Ünver, Hakkı Özgür | - |
dc.identifier.doi | 10.1016/j.procs.2022.01.214 | - |
dc.authorscopusid | 6603873269 | - |
dc.authorscopusid | 57220450360 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.7. Department of Mechanical Engineering | - |
Appears in Collections: | Makine Mühendisliği Bölümü / Department of Mechanical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
8
checked on Dec 21, 2024
Page view(s)
78
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.