Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8647
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karahan M. | - |
dc.contributor.author | Kasnakoğlu, Coşku | - |
dc.date.accessioned | 2022-07-30T16:43:42Z | - |
dc.date.available | 2022-07-30T16:43:42Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Karahan, M., & Kasnakoglu, C. Path Planning and Collision Avoidance with Artificial Intelligence for a Quadrotor UAV. In 2021 International Conference Automatics and Informatics (ICAI) (pp. 163-166). IEEE. | en_US |
dc.identifier.isbn | 9781665426619 | - |
dc.identifier.uri | https://doi.org/10.1109/ICAI52893.2021.9639807 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8647 | - |
dc.description | 2021 International Conference Automatics and Informatics, ICAI 2021 -- 30 September 2021 through 2 October 2021 -- -- 175600 | en_US |
dc.description.abstract | Artificial intelligence has brought new features to unmanned aerial vehicles. Path planning, trajectory optimization and obstacle avoidance are some of the features that artificial intelligence brings to drones. In this study, path planning optimization and collision avoidance with artificial intelligence for an unmanned aerial vehicle are emphasized. Path planning and collision avoidance simulations were performed using MATLAB software under ideal conditions and under noisy conditions. It is shown that the unmanned aerial vehicle finds the shortest path on maps with various obstacles. © 2021 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | International Conference Automatics and Informatics, ICAI 2021 Proceedings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | A-star algorithm | en_US |
dc.subject | artificial intelligence | en_US |
dc.subject | obstacle avoidance | en_US |
dc.subject | optimization | en_US |
dc.subject | path planning | en_US |
dc.subject | Quadrotor | en_US |
dc.subject | UAV | en_US |
dc.subject | Antennas | en_US |
dc.subject | Collision avoidance | en_US |
dc.subject | MATLAB | en_US |
dc.subject | Motion planning | en_US |
dc.subject | A-Star algorithm | en_US |
dc.subject | Collisions avoidance | en_US |
dc.subject | Condition | en_US |
dc.subject | Noisy conditions | en_US |
dc.subject | Obstacles avoidance | en_US |
dc.subject | Optimisations | en_US |
dc.subject | Quad rotors | en_US |
dc.subject | Short-path | en_US |
dc.subject | Trajectory optimization | en_US |
dc.subject | Unmanned aerial vehicles (UAV) | en_US |
dc.title | Path Planning and Collision Avoidance With Artificial Intelligence for a Quadrotor Uav | en_US |
dc.type | Conference Object | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.identifier.startpage | 163 | en_US |
dc.identifier.endpage | 166 | en_US |
dc.identifier.scopus | 2-s2.0-85123858097 | en_US |
dc.institutionauthor | Kasnakoğlu, Coşku | - |
dc.identifier.doi | 10.1109/ICAI52893.2021.9639807 | - |
dc.authorscopusid | 57216759940 | - |
dc.authorscopusid | 24802064500 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Dec 21, 2024
Page view(s)
160
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.