Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8625
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaratay B.-
dc.contributor.authorBestepe D.-
dc.contributor.authorSailunaz K.-
dc.contributor.authorOzyer T.-
dc.contributor.authorAlhajj R.-
dc.date.accessioned2022-07-30T16:43:37Z-
dc.date.available2022-07-30T16:43:37Z-
dc.date.issued2022-
dc.identifier.citationKaratay, B., Bestepe, D., Sailunaz, K., Ozyer, T., & Alhajj, R. (2022, March). A Multi-Modal Emotion Recognition System Based on CNN-Transformer Deep Learning Technique. In 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA) (pp. 145-150). IEEE.en_US
dc.identifier.isbn9781665410144-
dc.identifier.urihttps://doi.org/10.1109/CDMA54072.2022.00029-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8625-
dc.description7th International Conference on Data Science and Machine Learning Applications, CDMA 2022 -- 1 March 2022 through 3 March 2022 -- -- 177931en_US
dc.description.abstractEmotion analysis is a subject that researchers from various fields have been working on for a long time. Different emotion detection methods have been developed for text, audio, photography, and video domains. Automated emotion detection methods using machine learning and deep learning models from videos and pictures have been an interesting topic for researchers. In this paper, a deep learning framework, in which CNN and Transformer models are combined, that classifies emotions using facial and body features extracted from videos is proposed. Facial and body features were extracted using OpenPose, and in the data preprocessing stage 2 operations such as new video creation and frame selection were tried. The experiments were conducted on two datasets, FABO and CK+. Our framework outperformed similar deep learning models with 99% classification accuracy for the FABO dataset, and showed remarkable performance over 90% accuracy for most versions of the framework for both the FABO and CK+ dataset. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2022 7th International Conference on Data Science and Machine Learning Applications, CDMA 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCNNen_US
dc.subjectDeep Learningen_US
dc.subjectemotionen_US
dc.subjectemotion classi-ficationen_US
dc.subjectTransformeren_US
dc.subjectClassification (of information)en_US
dc.subjectCNNen_US
dc.subjectDeep learningen_US
dc.subjectDetection methodsen_US
dc.subjectEmotionen_US
dc.subjectEmotion classi-ficationen_US
dc.subjectEmotion detectionen_US
dc.subjectEmotion recognitionen_US
dc.subjectLearning modelsen_US
dc.subjectMulti-modalen_US
dc.subjectTransformeren_US
dc.subjectDeep learningen_US
dc.titleA Multi-Modal Emotion Recognition System Based on Cnn-Transformer Deep Learning Techniqueen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.startpage145en_US
dc.identifier.endpage150en_US
dc.identifier.wosWOS:000814738100025en_US
dc.identifier.scopus2-s2.0-85127855284en_US
dc.institutionauthorKaratay, Büşra-
dc.identifier.doi10.1109/CDMA54072.2022.00029-
dc.authorscopusid57568006400-
dc.authorscopusid57568203900-
dc.authorscopusid57056425600-
dc.authorscopusid8914139000-
dc.authorscopusid7004187647-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - İdari Personel ve Öğrencien_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Dec 21, 2024

Page view(s)

130
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.