Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeskin, Mustafa Mert-
dc.contributor.authorYılmaz, Muhammed-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2022-07-30T16:43:36Z-
dc.date.available2022-07-30T16:43:36Z-
dc.date.issued2021-
dc.identifier.citationKeskin, M. M., Yilmaz, M., & Ozbayoglu, A. M. (2021, December). A Deep Neural Network Model for Stock Investment Recommendation by Considering the Stock Market as a Time Graph. In 2021 2nd International Informatics and Software Engineering Conference (IISEC) (pp. 1-6). IEEE.en_US
dc.identifier.isbn9781665407595-
dc.identifier.urihttps://doi.org/10.1109/IISEC54230.2021.9672444-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8622-
dc.description2nd International Informatics and Software Engineering Conference, IISEC 2021 -- 16 December 2021 through 17 December 2021 -- -- 176423en_US
dc.description.abstractFinancial forecasting from raw time series data is one of the challenging problems in the literature for which satisfying results generally cannot be obtained even with deep learning methods. There is only limited information that can be extracted from the time series data. However, this can be compensated by using additional representations one of which is the graph representation. Graphs are better suited to represent relational data which can be essential for financial applications. Additionally, the stock market can be analyzed as a whole easily with graph representation which can unravel information that cannot be obtained with time series representation. We propose some graph representations that can be obtained from the financial data and show that using graph representation and time series representation together with deep neural networks (DNNs) improves the annual return significantly compared to using only time series data. © 2021 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2nd International Informatics and Software Engineering Conference, IISEC 2021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectDeep neural networksen_US
dc.subjectFinancial forecastingen_US
dc.subjectGraphsen_US
dc.subjectStock marketen_US
dc.subjectCommerceen_US
dc.subjectConvolutional neural networksen_US
dc.subjectFinancial marketsen_US
dc.subjectInvestmentsen_US
dc.subjectTime seriesen_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep learningen_US
dc.subjectFinancial forecastingen_US
dc.subjectGraph representationen_US
dc.subjectLearning methodsen_US
dc.subjectNeural network modelen_US
dc.subjectSeries representationsen_US
dc.subjectStock marketen_US
dc.subjectTime-series dataen_US
dc.subjectTimes seriesen_US
dc.subjectDeep neural networksen_US
dc.titleA Deep Neural Network Model for Stock Investment Recommendation by Considering the Stock Market as a Time Graphen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.wosWOS:000841548300048en_US
dc.identifier.scopus2-s2.0-85125304631en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/IISEC54230.2021.9672444-
dc.authorscopusid57419487300-
dc.authorscopusid57221948826-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Dec 21, 2024

Page view(s)

118
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.