Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIsik R.-
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2022-07-30T16:43:35Z-
dc.date.available2022-07-30T16:43:35Z-
dc.date.issued2021-
dc.identifier.citationIşık, R., & Tan, M. (2021, December). Automated Molecule Generation using Deep Q-Learning and Graph Neural Networks. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 2237-2244). IEEE.en_US
dc.identifier.isbn9781665401265-
dc.identifier.urihttps://doi.org/10.1109/BIBM52615.2021.9669667-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8618-
dc.descriptionNSFen_US
dc.description2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 -- 9 December 2021 through 12 December 2021 -- -- 176400en_US
dc.description.abstractThe concept of generating molecular structures with specific desirable characteristics underlies some of the crucial problems in drug discovery. In this paper, we present a model which constructs new molecules for specific desired properties. This model uses graph neural networks to generate molecular representations, and combining these representations with Reinforcement Learning architecture (Deep Q-Learning), builds new molecules. We used two different graph neural network architectures: Graph Convolutional Network and Graph Attention Network. We compared the molecular representations obtained from these two models with the Morgan Fingerprint representation in three separate experiments using the same Reinforcement Learning design. These experiments are single-objective optimization (drug-likeness), optimizing the penalized LogP with similarity constraint, and multi-objective optimization (drug-likeness with similarity constraint). The results show that the Reinforcement Learning models trained with molecular representations obtained from graph neural networks are more successful than the model trained with Morgan Fingerprint representation. © 2021 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK: 118E759en_US
dc.description.sponsorshipThis study is partially funded by The Scientific and Technological Research Council of Turkey (Grant No : 118E759)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcomputational molecule designen_US
dc.subjectdeep reinforcement learningen_US
dc.subjectgraph neural networksen_US
dc.subjectmolecular toxicityen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep neural networksen_US
dc.subjectGraph neural networksen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectNetwork architectureen_US
dc.subjectReinforcement learningen_US
dc.subjectComputational molecule designen_US
dc.subjectDrug discoveryen_US
dc.subjectFingerprint representationen_US
dc.subjectGraph neural networksen_US
dc.subjectLearning neural networksen_US
dc.subjectMolecular representationsen_US
dc.subjectMolecular toxicitiesen_US
dc.subjectPropertyen_US
dc.subjectQ-learningen_US
dc.subjectReinforcement learningsen_US
dc.subjectMoleculesen_US
dc.titleAutomated Molecule Generation Using Deep Q-Learning and Graph Neural Networksen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.startpage2237en_US
dc.identifier.endpage2244en_US
dc.identifier.scopus2-s2.0-85125206866en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.1109/BIBM52615.2021.9669667-
dc.authorscopusid57221607058-
dc.authorscopusid36984623900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

88
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.