Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRahman M.M.-
dc.contributor.authorKutlu, Mücahid-
dc.contributor.authorLease M.-
dc.date.accessioned2022-07-30T16:43:34Z-
dc.date.available2022-07-30T16:43:34Z-
dc.date.issued2022-
dc.identifier.citationRahman, M., Kutlu, M., & Lease, M. (2022, February). Understanding and Predicting Characteristics of Test Collections in Information Retrieval. In International Conference on Information (pp. 136-148). Springer, Cham.en_US
dc.identifier.isbn9783030969592-
dc.identifier.issn03029743-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-96960-8_10-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8615-
dc.description17th International Conference on Information for a Better World: Shaping the Global Future, iConference 2022 -- 28 February 2022 through 4 March 2022 -- -- 273989en_US
dc.description.abstractResearch community evaluations in information retrieval, such as NIST’s Text REtrieval Conference (TREC), build reusable test collections by pooling document rankings submitted by many teams. Naturally, the quality of the resulting test collection thus greatly depends on the number of participating teams and the quality of their submitted runs. In this work, we investigate: i) how the number of participants, coupled with other factors, affects the quality of a test collection; and ii) whether the quality of a test collection can be inferred prior to collecting relevance judgments from human assessors. Experiments conducted on six TREC collections illustrate how the number of teams interacts with various other factors to influence the resulting quality of test collections. We also show that the reusability of a test collection can be predicted with high accuracy when the same document collection is used for successive years in an evaluation campaign, as is common in TREC. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.description.sponsorshipMicron Foundationen_US
dc.description.sponsorshipAcknowledgments. We thank the reviewers for their valuable feedback. This research was supported in part by Wipro, the Micron Foundation, and by Good Systems (http://goodsystems.utexas.edu/), a UT Austin Grand Challenge to develop responsible AI technologies. The statements made herein are solely the opinions of the authors and do not reflect the views of the sponsoring agencies.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEvaluationen_US
dc.subjectPoolingen_US
dc.subjectReusabilityen_US
dc.subjectTest collectionsen_US
dc.subjectInformation retrievalen_US
dc.subjectTestingen_US
dc.subjectCommunity evaluationsen_US
dc.subjectDocument rankingen_US
dc.subjectEvaluationen_US
dc.subjectHuman assessorsen_US
dc.subjectParticipating teamsen_US
dc.subjectPoolingen_US
dc.subjectRelevance judgementen_US
dc.subjectResearch communitiesen_US
dc.subjectTest Collectionen_US
dc.subjectText retrieval conferencesen_US
dc.subjectReusabilityen_US
dc.titleUnderstanding and Predicting Characteristics of Test Collections in Information Retrievalen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.volume13193 LNCSen_US
dc.identifier.startpage136en_US
dc.identifier.endpage148en_US
dc.identifier.scopus2-s2.0-85126199634en_US
dc.institutionauthorKutlu, Mücahid-
dc.identifier.doi10.1007/978-3-030-96960-8_10-
dc.authorscopusid57212184355-
dc.authorscopusid35299304300-
dc.authorscopusid13005498000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

74
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.