Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaratayev M.-
dc.contributor.authorKhalyk S.-
dc.contributor.authorAdai S.-
dc.contributor.authorLee M.-H.-
dc.contributor.authorDemirci, Muhammed Fatih-
dc.date.accessioned2022-07-30T16:43:34Z-
dc.date.available2022-07-30T16:43:34Z-
dc.date.issued2021-
dc.identifier.citationKaratayev, M., Khalyk, S., Adai, S., Lee, M. H., & Demirci, M. F. (2021, November). Breast cancer histopathology image classification using CNN. In 2021 16th International Conference on Electronics Computer and Computation (ICECCO) (pp. 1-5). IEEE.en_US
dc.identifier.isbn9781665409452-
dc.identifier.urihttps://doi.org/10.1109/ICECCO53203.2021.9663757-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8613-
dc.description16th International Conference on Electronics Computer and Computation, ICECCO 2021 -- 25 November 2021 through 26 November 2021 -- -- 176250en_US
dc.description.abstractThe breast cancer is one of the wide spread diseases around the world. Cancer develops in a milk duct and then spreads to the surrounding breast tissues. This initial stage of progression is called invasive ductal carcinomas (IDC). Almost 80% of all breast cancers are invasive ductal carcinomas. If IDC is detected at early stages, the patient can be treated and will have a high survival rate, whereas undetected cancer may spread into other parts of the body, as well as surrounding breast tissues. In this work, the dataset that contains breast cancer histopathology images was used. The objective of this work is to implement a convolutional neural network (CNN) model for accurate IDC classification, by balancing the dataset and tuning hyperparameters. The proposed model achieves an accuracy of 92% for the classification of histopathological images, and outperforms the baseline CancerNet model with accuracy of 86%. Furthermore, our experimental results demonstrate the superiority of our approach over the pre-Trained networks, such as VGG16, DenseNet and ResNet18. © 2021 IEEE.en_US
dc.description.sponsorshipNazarbayev University, NUen_US
dc.description.sponsorshipThis work was supported by Faculty Development Competitive Research Grant Program (No. 080420FD1909) at Nazarbayev University.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2021 16th International Conference on Electronics Computer and Computation, ICECCO 2021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbreast canceren_US
dc.subjectCancerNeten_US
dc.subjectCNNen_US
dc.subjectDeep Learningen_US
dc.subjectIDCen_US
dc.subjectClassification (of information)en_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectHistologyen_US
dc.subjectImage classificationen_US
dc.subjectMedical imagingen_US
dc.subjectPatient treatmenten_US
dc.subjectTissueen_US
dc.subjectBreast Canceren_US
dc.subjectBreast tissuesen_US
dc.subjectCancerneten_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep learningen_US
dc.subjectImages classificationen_US
dc.subjectInvasive ductal carcinomataen_US
dc.subjectNeural network modelen_US
dc.subjectSurvival rateen_US
dc.subjectWide spreadsen_US
dc.subjectDiseasesen_US
dc.titleBreast Cancer Histopathology Image Classification Using Cnnen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.scopus2-s2.0-85124959801en_US
dc.institutionauthorDemirci, Muhammed Fatih-
dc.identifier.doi10.1109/ICECCO53203.2021.9663757-
dc.authorscopusid57460291800-
dc.authorscopusid57460158700-
dc.authorscopusid57326332800-
dc.authorscopusid56872008300-
dc.authorscopusid14041575400-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

164
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.