Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZirbilek, Nadir Emre-
dc.contributor.authorErakin, Mustafa-
dc.contributor.authorOzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2022-07-30T16:41:54Z-
dc.date.available2022-07-30T16:41:54Z-
dc.date.issued2021-
dc.identifier.citationZirbilek, N. E., Erakin, M., Özyer, T., & Alhajj, R. (2021, November). Hot topic detection and evaluation of multi-relation effects. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 416-422).en_US
dc.identifier.isbn9781450391283-
dc.identifier.issn2473-9928-
dc.identifier.issn2473-991X-
dc.identifier.urihttps://doi.org/10.1145/3487351.3490972-
dc.description.abstractWith the growth of social media, Twitter has become one of the most popularly used microblogging communication platforms between people. Due to the wide preference of Twitter, popular issues in public, events like local or global news and daily life stories can immediately publish on Twitter. Thus, a substantial number of hot topics are created by Twitter users in real-time. These topics can exhibit every incident of everyday life. Therefore, detection of hot topics can be used in many applications such as observing public judgment, product recommendation, and incidence detection. In this paper, we propose a method for detecting Twitter hot topics and evaluate the effect of multi-relations such as retweets and hashtags on hot topics. The dataset was generated by fetching tweets for a certain time and location by using GetOldTweets3 API. Then using the LDA topic modeling algorithm the hot topics were identified for each multi relation. Finally, the effect of each relation is described by using the coherence scores)en_US
dc.language.isoenen_US
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartofIEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) -- NOV 08-11, 2021 -- ELECTR NETWORKen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHot Topic Detectionen_US
dc.subjectTweeteren_US
dc.subjectSocial Mediaen_US
dc.subjectMulti-Relationsen_US
dc.titleHot Topic Detection and Evaluation of Multi-Relation Effectsen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProceedings of the IEEE-ACM International Conference on Advances in Social Networks Analysis and Mining-
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage416en_US
dc.identifier.endpage422en_US
dc.identifier.wosWOS:001196170500067-
dc.identifier.scopus2-s2.0-85124380874-
dc.institutionauthorErakın, Mustafa-
dc.identifier.doi10.1145/3487351.3490972-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science &amp- Humanities-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 5, 2025

WEB OF SCIENCETM
Citations

1
checked on Apr 5, 2025

Page view(s)

182
checked on Apr 7, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.