Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8605
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKardaş B.-
dc.contributor.authorBayar, İsmail Erdem-
dc.contributor.authorÖzyer T.-
dc.contributor.authorAlhajj R.-
dc.date.accessioned2022-07-30T16:41:54Z-
dc.date.available2022-07-30T16:41:54Z-
dc.date.issued2021-
dc.identifier.citationKardaş, B., Bayar, İ. E., Özyer, T., & Alhajj, R. (2021, November). Detecting spam tweets using machine learning and effective preprocessing. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 393-398).en_US
dc.identifier.isbn9781450391283-
dc.identifier.urihttps://doi.org/10.1145/3487351.3490968-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8605-
dc.descriptionACM Special Interest Group on Knowledge Discovery in Data (SIGKDD);Elsevier;IEEE Computer Society;IEEE TCDE;Springeren_US
dc.description13th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021 -- 8 November 2021 -- 176732en_US
dc.description.abstractNowadays, with the rapid increase in popularity of online social networks (OSNs), these platforms are realized as ideal places for spammers. Unfortunately, these spammers can easily publish malicious content, advertise phishing scams by taking advantage of OSNs. Therefore, effective identification and filtering of spam tweets will be beneficial to both OSNs and users. However, it is becoming increasingly difficult to check and eliminate spam tweets due to this great flow of posts. Motivated by these observations, in this paper we propose an approach for the detection of spam tweets using machine learning and effective preprocessing techniques. The approach proposes the advantages of the preprocessing and which of these preprocessing techniques are the most effective. To compare these techniques UtkML Twitter spam dataset is used in testing. After the most effective methods determined, the detection accuracy of the spam tweets will be better optimized by combining them. We have evaluated our solution with four different machine learning algorithms namely - Naïve Bayes Classifier, Neural Network, Logistic Regression and Support Vector Machine. With SVM Classifier, we are able to achieve an accuracy of 93.02%. Experimental results show that our approach can improve the performance of spam tweet classification effectively. © 2021 ACM.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machinery, Incen_US
dc.relation.ispartofProceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmachine learningen_US
dc.subjectpreprocessingen_US
dc.subjectsocial mediaen_US
dc.subjectspam detectionen_US
dc.subjectTwitteren_US
dc.subjectLearning algorithmsen_US
dc.subjectLogistic regressionen_US
dc.subjectStatistical testsen_US
dc.subjectSupport vector machinesen_US
dc.subjectDetection accuracyen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectNaive Bayes classifiersen_US
dc.subjectNeural-networksen_US
dc.subjectPhishingen_US
dc.subjectPre-processing techniquesen_US
dc.subjectPreprocessingen_US
dc.subjectSocial mediaen_US
dc.subjectSpam detectionen_US
dc.subjectSpammersen_US
dc.subjectSocial networking (online)en_US
dc.titleDetecting Spam Tweets Using Machine Learning and Effective Preprocessingen_US
dc.typeConference Objecten_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.identifier.startpage393en_US
dc.identifier.endpage398en_US
dc.identifier.scopus2-s2.0-85124395764en_US
dc.institutionauthorBayar, İsmail Erdem-
dc.identifier.doi10.1145/3487351.3490968-
dc.authorscopusid57447396600-
dc.authorscopusid57447143000-
dc.authorscopusid8914139000-
dc.authorscopusid7004187647-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrencien_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

120
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.