Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/851
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seyfioğlu, Mehmet Saygın | - |
dc.contributor.author | Özbayoğlu, Ahmet Murat | - |
dc.contributor.author | Gürbüz, Sevgi Zübeyde | - |
dc.date.accessioned | 2019-03-25T13:59:06Z | |
dc.date.available | 2019-03-25T13:59:06Z | |
dc.date.issued | 2018-08 | |
dc.identifier.citation | Seyfioğlu, M. S., Özbayoğlu, A. M., & Gürbüz, S. Z. (2018). Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Transactions on Aerospace and Electronic Systems, 54(4), 1709-1723. | en_US |
dc.identifier.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8283539 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/851 | - |
dc.description.abstract | Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar-17.3% improvement over SVM. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE Transactions on Aerospace and Electronic Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Signatures | en_US |
dc.subject | Future selection | en_US |
dc.subject | Radar | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Micro-Doppler | en_US |
dc.subject | Gait recognition | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Convolutional autoencoder (CAE) | en_US |
dc.title | Deep Convolutional Autoencoder for Radar-Based Classification of Similar Aided and Unaided Human Activities | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 54 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 1709 | en_US |
dc.identifier.endpage | 1723 | en_US |
dc.authorid | 0000-0001-7998-5735 | - |
dc.authorid | 0000-0002-2961-4976 | - |
dc.identifier.wos | WOS:000441403600010 | en_US |
dc.identifier.scopus | 2-s2.0-85041511531 | en_US |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.institutionauthor | Seyfioğlu, Mehmet Saygın | - |
dc.identifier.doi | 10.1109/TAES.2018.2799758 | - |
dc.identifier.doi | 10.1109/TAES.2018.2799758 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
130
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
250
checked on Dec 21, 2024
Page view(s)
294
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.