Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8346
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSopaoğlu, Ugur-
dc.contributor.authorAbul, Osman-
dc.date.accessioned2022-01-15T13:02:36Z-
dc.date.available2022-01-15T13:02:36Z-
dc.date.issued2021-
dc.identifier.issn1568-4946-
dc.identifier.issn1872-9681-
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2021.107743-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8346-
dc.description.abstractData streams are continuous, infinite and ordered sequences of data. In comparison to static dataset anonymization, data stream anonymization confront with a number of constraints and difficulties due to the dynamic nature of data flow. The literature already addressed the k-anonymization of data streams which contain quasi-identifier attributes. However, today most data streams contain sensitive and classification target attributes as well. This work's main motivation is to develop a k-anonymization method for data streams which additionally protects the sensitivity and enables effective classification models. The k-anonymization, as a result, is formulated as a weighted multi-objective optimization problem. There are three objectives with respective weights as user parameters. A clustering based k-anonymization algorithm is developed as the solution. An extensive experimental evaluation on three real datasets shows the effectiveness of our proposal in various configurations. Moreover, the experimental results also confirm that our proposal attains better classification accuracies in comparison to popular data stream anonymization techniques. (C) 2021 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Soft Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData streamsen_US
dc.subjectData anonymizationen_US
dc.subjectData privacyen_US
dc.subjectClassificationen_US
dc.subjectK-Anonymityen_US
dc.titleClassification Utility Aware Data Stream Anonymizationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume110en_US
dc.identifier.wosWOS:000729624800005en_US
dc.identifier.scopus2-s2.0-85111717061en_US
dc.institutionauthorAbul, Osman-
dc.identifier.doi10.1016/j.asoc.2021.107743-
dc.authorscopusid57192072291-
dc.authorscopusid6602597612-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

3
checked on Dec 21, 2024

Page view(s)

162
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.