Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8346
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sopaoğlu, Ugur | - |
dc.contributor.author | Abul, Osman | - |
dc.date.accessioned | 2022-01-15T13:02:36Z | - |
dc.date.available | 2022-01-15T13:02:36Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 1568-4946 | - |
dc.identifier.issn | 1872-9681 | - |
dc.identifier.uri | https://doi.org/10.1016/j.asoc.2021.107743 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8346 | - |
dc.description.abstract | Data streams are continuous, infinite and ordered sequences of data. In comparison to static dataset anonymization, data stream anonymization confront with a number of constraints and difficulties due to the dynamic nature of data flow. The literature already addressed the k-anonymization of data streams which contain quasi-identifier attributes. However, today most data streams contain sensitive and classification target attributes as well. This work's main motivation is to develop a k-anonymization method for data streams which additionally protects the sensitivity and enables effective classification models. The k-anonymization, as a result, is formulated as a weighted multi-objective optimization problem. There are three objectives with respective weights as user parameters. A clustering based k-anonymization algorithm is developed as the solution. An extensive experimental evaluation on three real datasets shows the effectiveness of our proposal in various configurations. Moreover, the experimental results also confirm that our proposal attains better classification accuracies in comparison to popular data stream anonymization techniques. (C) 2021 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Applied Soft Computing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Data streams | en_US |
dc.subject | Data anonymization | en_US |
dc.subject | Data privacy | en_US |
dc.subject | Classification | en_US |
dc.subject | K-Anonymity | en_US |
dc.title | Classification Utility Aware Data Stream Anonymization | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 110 | en_US |
dc.identifier.wos | WOS:000729624800005 | en_US |
dc.identifier.scopus | 2-s2.0-85111717061 | en_US |
dc.institutionauthor | Abul, Osman | - |
dc.identifier.doi | 10.1016/j.asoc.2021.107743 | - |
dc.authorscopusid | 57192072291 | - |
dc.authorscopusid | 6602597612 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
3
checked on Dec 21, 2024
Page view(s)
162
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.