Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8315
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzdilli, B.G.-
dc.contributor.authorArslan, M.B.-
dc.contributor.authorAlp, T.-
dc.contributor.authorAlbayrak, O.-
dc.contributor.authorÜnal, P.-
dc.contributor.authorBozkurt, O.-
dc.contributor.authorÖzbayoğlu, A. Murat-
dc.date.accessioned2022-01-15T13:02:30Z-
dc.date.available2022-01-15T13:02:30Z-
dc.date.issued2021-
dc.identifier.isbn9781665436496-
dc.identifier.urihttps://doi.org/10.1109/SIU53274.2021.9477898-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8315-
dc.description29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 -- 9 June 2021 through 11 June 2021 -- 170536en_US
dc.description.abstractIn this study, our primary aim is to detect different formations, objects on the images taken from various underwater videos. For this purpose, machine learning models such as SVM, multi-layer perceptron, logistic regression that use attributes, image histogram obtained from images were chosen. In addition, Autoencoder and CNN based deep learning models were used directly over images and their performances were compared. According to the results, it was observed that all models were satisfactory and achieved good classification performances. The highest performance was observed in the Autoencoder based deep learning model, which achieved an accuracy level of %95. In the future, we are planning to continue studies to focus on underwater cable tracking and detecting errors and anomalies in underwater cables. © 2021 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofSIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer visionen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectObject recognitionen_US
dc.subjectUnderwater image analysisen_US
dc.subjectCablesen_US
dc.subjectDeep learningen_US
dc.subjectLogistic regressionen_US
dc.subjectMultilayer neural networksen_US
dc.subjectObject detectionen_US
dc.subjectObject recognitionen_US
dc.subjectSupport vector machinesen_US
dc.subjectUnderwater equipmenten_US
dc.subjectAccuracy levelen_US
dc.subjectClassification performanceen_US
dc.subjectImage histogramsen_US
dc.subjectLearning modelsen_US
dc.subjectMachine learning modelsen_US
dc.subjectMulti layer perceptronen_US
dc.subjectPerformance analysisen_US
dc.subjectUnderwater cablesen_US
dc.subjectLearning systemsen_US
dc.titlePerformance Analysis of Machine Learning Models for Object Recognition in Underwater Video Imagesen_US
dc.title.alternativeSualti Video Görüntülerinde Nesne Tanima Amaçli Yapay Ö?renme Modellerinin Performans Analizien_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.wosWOS:000808100700140en_US
dc.identifier.scopus2-s2.0-85111450273en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/SIU53274.2021.9477898-
dc.authorscopusid57223856820-
dc.authorscopusid57226399387-
dc.authorscopusid57226393865-
dc.authorscopusid57226393431-
dc.authorscopusid56396952700-
dc.authorscopusid57226407345-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

172
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.