Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8253
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Görgülüarslan, Recep Muhammet | - |
dc.contributor.author | Ateş, G.C. | - |
dc.contributor.author | Utku Güngör, Olgun | - |
dc.contributor.author | Yamaner, Y. | - |
dc.date.accessioned | 2022-01-15T13:00:45Z | - |
dc.date.available | 2022-01-15T13:00:45Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1530-9827 | - |
dc.identifier.uri | https://doi.org/10.1115/1.4053001 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8253 | - |
dc.description.abstract | Additive manufacturing (AM) introduces geometric uncertainties on the fabricated strut members of lattice structures. These uncertainties result in deviations between the modeled and fabricated geometries of struts. The use of deep neural networks (DNNs) to accurately predict the statistical parameters of the effective strut diameters to account for the AM-introduced geometric uncertainties with a small training dataset for constant process parameters is studied in this research. For the training data, struts with certain angle and diameter values are fabricated by the material extrusion process. The geometric uncertainties are quantified using the random field theory based on the spatial strut radius measurements obtained from the microscope images of the fabricated struts. The uncertainties are propagated to the effective diameters of the struts using a stochastic upscaling technique. The relationship between the modeled strut diameter and the characterized statistical parameters of the effective diameters are used as the training data to establish a DNN model. The validation results show that the DNN model can predict the statistical parameters of the effective diameters of the struts modeled with angles and diameters different from the ones used in the training data with good accuracy even if the training data set is small. Developing such a DNN model with small data will allow designers to use the fabricated results in the design optimization processes without requiring additional experimentations. © 2021 Mary Ann Liebert Inc.. All rights reserved. | en_US |
dc.description.sponsorship | 118M715 | en_US |
dc.description.sponsorship | The authors acknowledge the funding provided by the Turkish Science and Research Council (TUBITAK) by project number 118M715. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Society of Mechanical Engineers (ASME) | en_US |
dc.relation.ispartof | Journal of Computing and Information Science in Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | 3D printers | en_US |
dc.subject | Additives | en_US |
dc.subject | Deep neural networks | en_US |
dc.subject | Extrusion | en_US |
dc.subject | Fabrication | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Geometry | en_US |
dc.subject | Stochastic systems | en_US |
dc.subject | Uncertainty analysis | en_US |
dc.subject | Effective diameter | en_US |
dc.subject | Geometric uncertainties | en_US |
dc.subject | Lattice structures | en_US |
dc.subject | Neural network model | en_US |
dc.subject | Process parameters | en_US |
dc.subject | Small training | en_US |
dc.subject | Statistical parameters | en_US |
dc.subject | Training data | en_US |
dc.subject | Training dataset | en_US |
dc.subject | Uncertainty | en_US |
dc.subject | Struts | en_US |
dc.title | Strut Diameter Uncertainty Prediction by Deep Neural Network for Additively Manufactured Lattice Structures | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Mechanical Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 22 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.wos | WOS:000790402800012 | en_US |
dc.identifier.scopus | 2-s2.0-85121727139 | en_US |
dc.institutionauthor | Görgülüarslan, Recep Muhammet | - |
dc.identifier.doi | 10.1115/1.4053001 | - |
dc.authorscopusid | 56076567200 | - |
dc.authorscopusid | 57221393471 | - |
dc.authorscopusid | 57222077088 | - |
dc.authorscopusid | 57354674000 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.7. Department of Mechanical Engineering | - |
Appears in Collections: | Makine Mühendisliği Bölümü / Department of Mechanical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
5
checked on Dec 21, 2024
Page view(s)
150
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.