Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8176
Title: | Effect of Adsorption and Substitutional B Doping at Different Concentrations on the Electronic and Magnetic Properties of a Beo Monolayer: a First-Principles Study | Authors: | Bafekry, A. Faraji, M. Fadlallah, M. M. Hoat, D. M. Khatibani, A. Bagheri Sarsari, I. Abdolhosseini Ghergherehchi, M. |
Keywords: | 2-Dimensional Materials Beryllium-Oxide Impurities Surface Growth Carbon Boron |
Publisher: | Royal Soc Chemistry | Abstract: | The 2D form of the BeO sheet has been successfully prepared (Hui Zhang et al., ACS Nano, 2021, 15, 2497). Motivated by these exciting experimental results on the 2D layered BeO structure, we studied the effect of the adsorption of B atoms on BeO (B@BeO) and substitutional B atoms (B-BeO) at the Be site at different B concentrations. We investigated the structural stability and the mechanical, electronic, magnetic, and optical properties of the mentioned structures using first-principles calculations. We found out that hexagonal BeO monolayers with adsorbed and dopant B atoms have different mechanical stabilities at different concentrations. B@BeO and B-BeO monolayers are brittle structures, and B@BeO structures are more rigid than B-BeO monolayers (at the same B concentration). The adsorption and the formation energy per B atom decrease as the B concentration increases. In comparison, the work function increases when increasing the B concentration. The work function of B@BeO is higher than the corresponding value of B-BeO (at the same B concentration). The magnetic moment linearly increases as the B concentration increases. BeO is a semiconductor with an indirect bandgap of 5.3 eV. The B@BeO and B-BeO structures are semiconductors, except for 3B-BeO (14.2% doped concentration), which is a metal. The bandgap is 1.25 eV for most of the adsorbed atom concentrations. For B-BeO, the bandgap decreases to zero at a concentration of 14.2%. The bandgap of the B-BeO monolayer at different B concentrations is smaller than the corresponding values of the B@BeO monolayer, which indicates that B substitutional doping has a greater effect on the electronic structure of the BeO monolayer than B adsorption doping. We investigated the optical properties, including the dielectric function and absorption coefficient. The results indicate good optical absorption in the range of infrared and ultraviolet energies for the B adsorbed and doped BeO monolayer. | URI: | https://doi.org/10.1039/d1cp03196a https://hdl.handle.net/20.500.11851/8176 |
ISSN: | 1463-9076 1463-9084 |
Appears in Collections: | Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
2
checked on Jan 18, 2025
WEB OF SCIENCETM
Citations
28
checked on Dec 21, 2024
Page view(s)
86
checked on Jan 20, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.