Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8150
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ağca, A. | - |
dc.contributor.author | Atalay, V.F.B. | - |
dc.date.accessioned | 2022-01-15T12:58:46Z | - |
dc.date.available | 2022-01-15T12:58:46Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 9781665436496 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU53274.2021.9477782 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8150 | - |
dc.description | 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 -- 9 June 2021 through 11 June 2021 -- 170536 | en_US |
dc.description.abstract | 3D shape completion plays a crucial role in transforming the distorted real world data to the digital data which represents the original data accurately. In recent times, there has been several works on 3D shape completion with deep learning models. Due to the input requirements of deep learning models, it is necessary to form the input data into a specific format before feeding into the network. In this work, Multilayer Spherical Depth Parameters used with a specific deep learning model for 3D shape completion and its highly accurate results will be presented. © 2021 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Shape completion | en_US |
dc.subject | Spherical depth parameters | en_US |
dc.subject | 3D modeling | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Metadata | en_US |
dc.subject | Multilayers | en_US |
dc.subject | Signal processing | en_US |
dc.subject | 3-D shape | en_US |
dc.subject | Depth parameters | en_US |
dc.subject | Digital datas | en_US |
dc.subject | Highly accurate | en_US |
dc.subject | Input datas | en_US |
dc.subject | Learning models | en_US |
dc.subject | Real-world | en_US |
dc.subject | Deep learning | en_US |
dc.title | 3D shape completion using multilayer spherical depth parameters | en_US |
dc.title.alternative | Çok Katmanli Küresel Derinlik Parametreleri ile 3b Şekil Tamamlama | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.wos | WOS:000808100700026 | en_US |
dc.identifier.scopus | 2-s2.0-85111435399 | en_US |
dc.institutionauthor | Ağca, Abdüllatif | - |
dc.identifier.doi | 10.1109/SIU53274.2021.9477782 | - |
dc.authorscopusid | 57226402533 | - |
dc.authorscopusid | 23110410300 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | tr | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.