Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7851
Title: Derin öğrenme modelleri kullanılarak beyin tümörlerinin sınıflandırılması
Other Titles: Classification of brain tumors via deep learning models
Authors: Dağlı, Kaya
Advisors: Eroğul, Osman
Keywords: Biyomühendislik
Bioengineering
Publisher: TOBB Ekonomi ve Teknoloji Üniversitesi
Source: Dağlı, Kaya. (2021). Derin öğrenme modelleri kullanılarak beyin tümörlerinin sınıflandırılması. (Yayınlanmamış Yüksek Lisans Tezi). TOBB Ekonomi ve Teknoloji Üniversitesi, Fen Bilimleri Enstitüsü, Biyomedikal Mühendisliği Ana Bilim Dalı
Abstract: Beyin tümörleri insan sağlığını önemli derecede etkileyebilmektedir. Bu tümörlerin yanlış teşhisi durumunda, müdahale için alınacak olan kararlar ve bireyin sağlık durumu verimli şekilde belirlenememektedir. Manyetik rezonans görüntülerinin bir hekim tarafından incelenmesi, beyin tümörlerinin belirlenmesinde en yaygın kullanılan yöntemdir. Beyin tümörlerinin çeşitliliğinden ve hekimlerin incelemesi gereken birçok görüntü olduğundan ötürü, bu yöntem hem insan hatalarına yatkındır hem de fazla zaman harcanmasına neden olmaktadır. Bu çalışmada, en yaygın görülen üç beyin tümörü çeşidi olan; Gliom, Meninjiyom ve Hipofiz bezi tümörlerinin derin öğrenme modelleri kullanılarak sınıflandırılması üzerine çalışılmıştır. Çalışmada doğruluk oranının yüksek olmasına önem verilirken, modellerin eğitimi için harcanan zaman da incelenmiştir. Bu sınıflandırma çalışması ile hekimlere yardımcı olabilecek bir sistem yaratmak amaçlanmıştır. Doğruluk oranı %90'a varan bir sistem oluşturulmuştur.
Brain tumors threathen human health significantly. Misdiagnosis of these tumors decrease effectiveness of decisions for intervention and patient's state of health. The conventional method to differentiate brain tumors is by the inspection of magnetic resonance images by clinicians. Since there are various types of brain tumors and there are many images that clinicians should examine, this method is both prone to human errors and causes excessive time consumption. In this study, the most common brain tumor types; Glioma, Meningioma and Pituitary are classified using deep learning models. While the main objective of this study is to have a high rate of accuracy, the time spent is also examined. The aim of this study is to ease clinicians work load and have a time efficient classification system. The system which has been built has an accuracy up to 90%.
Description: YÖK Tez No: 691281
URI: https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=tqUiYt63sTQLTpozMJ92Qqmj1RZ8UQOyGq5_DgC7p79OIAcCkoWMpjMtp7rBYfkE
https://hdl.handle.net/20.500.11851/7851
Appears in Collections:Biyomedikal Mühendisliği Yüksek Lisans Tezleri / Biomedical Engineering Master Theses

Files in This Item:
File SizeFormat 
691281.pdf1.65 MBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

952
checked on Nov 11, 2024

Download(s)

480
checked on Nov 11, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.