Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksoylu, Burak-
dc.contributor.authorParks, Michael L.-
dc.date.accessioned2021-09-11T16:09:55Z-
dc.date.available2021-09-11T16:09:55Z-
dc.date.issued2011en_US
dc.identifier.issn0096-3003-
dc.identifier.issn1873-5649-
dc.identifier.urihttps://doi.org/10.1016/j.amc.2011.01.027-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7812-
dc.description.abstractIn this article we present the first results on domain decomposition methods for nonlocal operators. We present a nonlocal variational formulation for these operators and establish the well-posedness of associated boundary value problems, proving a nonlocal Poincare inequality. To determine the conditioning of the discretized operator, we prove a spectral equivalence which leads to a mesh size independent upper bound for the condition number of the stiffness matrix. We then introduce a nonlocal two-domain variational formulation utilizing nonlocal transmission conditions, and prove equivalence with the single-domain formulation. A nonlocal Schur complement is introduced. We establish condition number bounds for the nonlocal stiffness and Schur complement matrices. Supporting numerical experiments demonstrating the conditioning of the nonlocal one- and two-domain problems are presented. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipNSFNational Science Foundation (NSF) [DMS-1016190]; NSF LA EPSCoR; Louisiana Board of Regents; US Department of Energy's National Nuclear Security AdministrationNational Nuclear Security Administration [DE-AC04-94AL85000]en_US
dc.description.sponsorshipSupported in part by NSF DMS-1016190 and his visits to Sandia National Laboratories were partially supported by NSF LA EPSCoR and Louisiana Board of Regents LINK program.; Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplied Mathematics And Computationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDomain decompositionen_US
dc.subjectNonlocal substructuringen_US
dc.subjectNonlocal operatorsen_US
dc.subjectNonlocal Poincare inequalityen_US
dc.subjectp-Laplacianen_US
dc.subjectPeridynamicsen_US
dc.subjectNonlocal Schur complementen_US
dc.subjectCondition numberen_US
dc.titleVariational Theory and Domain Decomposition for Nonlocal Problemsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume217en_US
dc.identifier.issue14en_US
dc.identifier.startpage6498en_US
dc.identifier.endpage6515en_US
dc.authorid0000-0002-7244-3340-
dc.identifier.wosWOS:000287691300006en_US
dc.identifier.scopus2-s2.0-79952007924en_US
dc.institutionauthorAksoylu, Burak-
dc.identifier.doi10.1016/j.amc.2011.01.027-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
7812.pdf484.02 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

61
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

73
checked on Sep 21, 2024

Page view(s)

130
checked on Dec 16, 2024

Download(s)

2
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.