Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7810
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-13T16:09:55Z-
dc.date.available2021-09-13T16:09:55Z-
dc.date.issued2008en_US
dc.identifier.citationCelikyilmaz, A., & Türkşen, I. B. (2008). Validation criteria for enhanced fuzzy clustering. Pattern Recognition Letters, 29(2), 97-108.en_US
dc.identifier.issn0167-8655-
dc.identifier.issn1872-7344-
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2007.08.017-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7810-
dc.description.abstractWe introduce two new criterions for validation of results obtained from recent novel-clustering algorithm, improved fuzzy clustering (IFC) to be used to find patterns in regression and classification type datasets, separately. IFC algorithm calculates membership values that are used as additional predictors to form fuzzy decision functions for each cluster. Proposed validity criterions are based on the ratio of compactness to separability of clusters. The optimum compactness of a cluster is represented with average distances between every object and cluster centers, and total estimation error from their fuzzy decision functions. The separability is based on a conditional ratio between the similarities between cluster representatives and similarities between fuzzy decision surfaces of each cluster. The performance of the proposed validity criterions are compared to other structurally similar cluster validity indexes using datasets from different domains. The results indicate that the new cluster validity functions are useful criterions when selecting parameters of IFC models. (c) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectsupervised clusteringen_US
dc.subjectfuzzy clusteringen_US
dc.subjectcluster validity indexen_US
dc.subjectfuzzy functionsen_US
dc.titleValidation Criteria for Enhanced Fuzzy Clusteringen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume29en_US
dc.identifier.issue2en_US
dc.identifier.startpage97en_US
dc.identifier.endpage108en_US
dc.identifier.wosWOS:000252346600001en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.patrec.2007.08.017-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

37
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

23
checked on Dec 21, 2024

Page view(s)

130
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.