Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7773
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:59:40Z-
dc.date.available2021-09-11T15:59:40Z-
dc.date.issued2008-
dc.identifier.issn0010-4825-
dc.identifier.issn1879-0534-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2008.02.003-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7773-
dc.description.abstractA new approach based on the implementation of the automated diagnostic systems for Doppler ultrasound signals classification with the features extracted by eigenvector methods is presented. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the Doppler ultrasound signals. Decision making was performed in two stages: feature extraction by the eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the Doppler ultrasound signals by the combination of eigenvector methods and the classifiers. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the Doppler ultrasound signals and the probabilistic neural networks (PNNs), recurrent neural networks (RNNs) trained on these features achieved high classification accuracies. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers In Biology And Medicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDoppler ultrasound signalsen_US
dc.subjecteigenvector methodsen_US
dc.subjectprobabilistic neural networken_US
dc.subjectrecurrent neural networken_US
dc.titleUsage of Eigenvector Methods To Improve Reliable Classifier for Doppler Ultrasound Signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume38en_US
dc.identifier.issue5en_US
dc.identifier.startpage563en_US
dc.identifier.endpage573en_US
dc.identifier.wosWOS:000256218200004-
dc.identifier.scopus2-s2.0-42749088090-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid18358461-
dc.identifier.doi10.1016/j.compbiomed.2008.02.003-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Jan 25, 2025

WEB OF SCIENCETM
Citations

10
checked on Jan 11, 2025

Page view(s)

76
checked on Jan 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.