Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7773
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:59:40Z | - |
dc.date.available | 2021-09-11T15:59:40Z | - |
dc.date.issued | 2008 | - |
dc.identifier.issn | 0010-4825 | - |
dc.identifier.issn | 1879-0534 | - |
dc.identifier.uri | https://doi.org/10.1016/j.compbiomed.2008.02.003 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7773 | - |
dc.description.abstract | A new approach based on the implementation of the automated diagnostic systems for Doppler ultrasound signals classification with the features extracted by eigenvector methods is presented. In practical applications of pattern recognition, there are often diverse features extracted from raw data which needs recognizing. Because of the importance of making the right decision, the present work is carried out for searching better classification procedures for the Doppler ultrasound signals. Decision making was performed in two stages: feature extraction by the eigenvector methods and classification using the classifiers trained on the extracted features. The aim of the study is classification of the Doppler ultrasound signals by the combination of eigenvector methods and the classifiers. The present research demonstrated that the power levels of the power spectral density (PSD) estimates obtained by the eigenvector methods are the features which well represent the Doppler ultrasound signals and the probabilistic neural networks (PNNs), recurrent neural networks (RNNs) trained on these features achieved high classification accuracies. (C) 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Computers In Biology And Medicine | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Doppler ultrasound signals | en_US |
dc.subject | eigenvector methods | en_US |
dc.subject | probabilistic neural network | en_US |
dc.subject | recurrent neural network | en_US |
dc.title | Usage of Eigenvector Methods To Improve Reliable Classifier for Doppler Ultrasound Signals | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 38 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 563 | en_US |
dc.identifier.endpage | 573 | en_US |
dc.identifier.wos | WOS:000256218200004 | - |
dc.identifier.scopus | 2-s2.0-42749088090 | - |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.pmid | 18358461 | - |
dc.identifier.doi | 10.1016/j.compbiomed.2008.02.003 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
7
checked on Jan 25, 2025
WEB OF SCIENCETM
Citations
10
checked on Jan 11, 2025
Page view(s)
76
checked on Jan 20, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.