Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelikyılmaz, Aslı-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:59:33Z-
dc.date.available2021-09-11T15:59:33Z-
dc.date.issued2008en_US
dc.identifier.citationIEEE International Conference on Fuzzy Systems -- JUN 01-06, 2008 -- Hong Kong, PEOPLES R CHINAen_US
dc.identifier.isbn978-1-4244-1818-3-
dc.identifier.issn1098-7584-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7761-
dc.description.abstractThe Fuzzy C-Regression Method (FCRM) based on Fuzzy C-Means (FCM) clustering algorithm was proposed by Hathaway and Bezdek to solve the switching regression problems, and it was applied to fuzzy models by many to build more powerful fuzzy inference systems. The FCRM methods require initialization parameters which are in need for proper identification, since uncertain information can create imperfect expressions, which may hamper the predictive power of these models. This paper investigates the behavior of the FCRM models under uncertain parameters. The upper and lower bounds of the membership values can be identified based on the limits of level of fuzziness parameter around the certain information points such as local functions and ensemble point values. This is a further step to identify the footprint-of-uncertainty of membership values when FCRM is used. It is shown that the uncertainty of membership values induced by the level of fuzziness parameter can be identified based on first order approximations of the membership value calculation function.en_US
dc.description.sponsorshipIEEEen_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC)CGIARen_US
dc.description.sponsorshipManuscript received December 1, 2007. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2008 IEEE International Conference On Fuzzy Systems, Vols 1-5en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleUncertainty Bounds of Fuzzy C-Regression Methoden_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesIEEE International Conference on Fuzzy Systemsen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.startpage1195en_US
dc.identifier.endpage+en_US
dc.identifier.wosWOS:000262974000189en_US
dc.identifier.scopus2-s2.0-55249123153en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceIEEE International Conference on Fuzzy Systemsen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.