Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorZarinbal, M.-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:59:30Z-
dc.date.available2021-09-11T15:59:30Z-
dc.date.issued2009en_US
dc.identifier.citationJoint World Congress of International-Fuzzy-Systems-Association (IFSA)/European Conference of European-Society-for-Fuzzy-Logic-and-Technology (EUSFLAT) -- JUL 20-24, 2009 -- Lisbon, PORTUGALen_US
dc.identifier.isbn978-989-95079-6-8-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7756-
dc.description.abstractFuzzy clustering is well known as a robust and efficient way to reduce computation cost to obtain the better results. In the literature, many robust fuzzy clustering models have been presented such as Fuzzy C-Mean (FCM) and Possibilistic C-Mean (PCM), where these methods are Type-I Fuzzy clustering. Type-II Fuzzy sets, on the other hand, can provide better performance than Type-I Fuzzy sets, especially when many uncertainties are presented in real data. The focus of this paper is to design a new Type-II Fuzzy clustering method based on Krishnapuram and Keller PCM. The proposed method is capable to cluster Type-II fuzzy data and can obtain the better number of clusters (c) and degree of fuzziness (m) by using Type-II Kwon validity index. In the proposed method, two kind of distance measurements, Euclidean and Mahalanobis are examined. The results show that the proposed model, which uses Mahalanobis distance based on Gustafson and Kessel approach is more accurate and can efficiently handle uncertainties.en_US
dc.description.sponsorshipInt Fuzzy Syst Assoc (IFSA), European Soc Fuzzy Log & Technol (EUSFLAT)en_US
dc.language.isoenen_US
dc.publisherEuropean Soc Fuzzy Logic & Technologyen_US
dc.relation.ispartofProceedings of The Joint 2009 International Fuzzy Systems Association World Congress And 2009 European Society of Fuzzy Logic And Technology Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectType-II Fuzzy Logicen_US
dc.subjectPossibilistic C-Mean (PCM)en_US
dc.subjectMahalanobis Distanceen_US
dc.subjectCluster Validity Indexen_US
dc.titleType-Ii Fuzzy Possibilistic C-Mean Clusteringen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.startpage30en_US
dc.identifier.endpage35en_US
dc.identifier.wosWOS:000279170600006en_US
dc.identifier.scopus2-s2.0-77957910097en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceJoint World Congress of International-Fuzzy-Systems-Association (IFSA)/European Conference of European-Society-for-Fuzzy-Logic-and-Technology (EUSFLAT)en_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

20
checked on Dec 21, 2024

Page view(s)

80
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.