Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7718
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTu, Nguyen Anh-
dc.contributor.authorHuynh-The, Thien-
dc.contributor.authorWong, Kok-Seng-
dc.contributor.authorDemirci, Muhammed Fatih-
dc.contributor.authorLee, Young-Koo-
dc.date.accessioned2021-09-11T15:59:09Z-
dc.date.available2021-09-11T15:59:09Z-
dc.date.issued2021en_US
dc.identifier.issn0920-8542-
dc.identifier.issn1573-0484-
dc.identifier.urihttps://doi.org/10.1007/s11227-021-03865-7-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7718-
dc.description.abstractNowadays, the explosion of CCTV cameras has resulted in an increasing demand for distributed solutions to efficiently process the vast volume of video data. Otherwise, the use of surveillance when people are being watched remotely and recorded continuously has raised a significant threat to visual privacy. Using existing systems cannot prevent any party from exploiting unwanted personal data of others. In this paper, we develop an intelligent surveillance system with integrated privacy protection, where it is built on the top of big data tools, i.e., Kafka and Spark Streaming. To protect individual privacy, we propose a privacy-preserving solution based on effective face recognition and tracking mechanisms. Particularly, we associate body pose with face to reduce privacy leaks across video frames. The body pose is also exploited to infer person-centric information like human activities. Extensive experiments conducted on benchmark datasets further demonstrate the efficiency of our system for various vision tasks.en_US
dc.description.sponsorshipSocial Policy Grant; Nazarbayev Universityen_US
dc.description.sponsorshipThis work was supported by the Social Policy Grant and funded by the Nazarbayev University.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Supercomputingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntelligent video analyticsen_US
dc.subjectLarge-scale surveillanceen_US
dc.subjectVisual privacyen_US
dc.subjectHuman activity analysisen_US
dc.subjectBig dataen_US
dc.subjectApache sparken_US
dc.titleToward Efficient and Intelligent Video Analytics With Visual Privacy Protection for Large-Scale Surveillanceen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0002-9172-2935-
dc.identifier.wosWOS:000650818100002en_US
dc.identifier.scopus2-s2.0-85106247687en_US
dc.institutionauthorDemirci, Muhammed Fatih-
dc.identifier.doi10.1007/s11227-021-03865-7-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

7
checked on Dec 21, 2024

Page view(s)

124
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.