Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/771
Title: Broadband and Polarization-Independent Asymmetric Transmission of Visible Light Through a Three-Dimensional Trapezoidal Metallic Metasurface
Authors: Özer, Ahmet
Koçer, Hasan Erdinç
Kurt, Hamza
Keywords: Photonic crystals
Waveguides
Optical diode
Publisher: OSA - The Optical Society
Source: Ozer, A., Kocer, H., & Kurt, H. (2018). Broadband and polarization-independent asymmetric transmission of visible light through a three-dimensional trapezoidal metallic metasurface. JOSA B, 35(9), 2111-2117.
Abstract: In modern optical applications, it has become an important need to flow light unidirectionally. An optical diode realizes this task as an electrical counterpart manipulates the flow of electrons in semiconductor materials. In this study, we show a broadband and polarization-independent optical diode-like mechanism in a metasurface configuration in the visible spectrum. The approach is passive such that the operating principle does not depend on any type of external biasing scheme. The constituted metasurface composed of a periodic type three-dimensional nanoarray of trapezoidal-shaped aluminum metal on a sapphire substrate is designed to produce the desired optical response for opposite directions of illumination. The optical transmission properties were systematically investigated using finite-difference time-domain computations. The asymmetric transmission frequency interval of the designed metasurface is associated with the Wood–Rayleigh anomaly, and the physical principle lies in the generation of the different number of higher order modes upon oppositely incident light. Our design has forward transmission of greater than 50%, backward transmission of less than 28%, and contrast ratio of greater than 3 dB in the entire visible spectrum. Specifically, a maximum forward transmission of 88% at 550 nm wavelength and a very high contrast ratio (∼23 dB) at a wavelength of 461 nm were obtained. It is numerically shown that the asymmetric transmission has been directly related to the appearance of high-order diffractions for only one direction excitation case. This study provides a path toward the realization of optical diodes for applications, such as optical communications and laser systems.
URI: https://doi.org/10.1364/JOSAB.35.002111
https://hdl.handle.net/20.500.11851/771
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

WEB OF SCIENCETM
Citations

20
checked on Dec 21, 2024

Page view(s)

162
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.