Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSert, Onur Can-
dc.contributor.authorDursun, Kayhan-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorJida, Jamal-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2021-09-11T15:58:49Z-
dc.date.available2021-09-11T15:58:49Z-
dc.date.issued2012en_US
dc.identifier.issn0948-695X-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7682-
dc.description.abstractMulti objective clustering is one focused area of multi objective optimization. Multi objective optimization attracted many researchers in several areas over a decade. Utilizing multi objective clustering mainly considers multiple objectives simultaneously and results with several natural clustering solutions. Obtained result set suggests different point of views for solving the clustering problem. This paper assumes all potential solutions belong to different experts and in overall; ensemble of solutions finally has been utilized for finding the final natural clustering. We have tested on categorical datasets and compared them against single objective clustering result in terms of purity and distance measure of k-modes clustering. Our clustering results have been assessed to find the most natural clustering. Our results get hold of existing classes decided by human experts.en_US
dc.description.sponsorshipScientific and Technical Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [Tubitak EEEAG 109E241]en_US
dc.description.sponsorshipThis paper is part of the project sponsored by Scientific and Technical Research Council of Turkey (Tubitak EEEAG 109E241). We would like to thank for their support.en_US
dc.language.isoenen_US
dc.publisherGraz Univ Technolgoy, Inst Information Systems Computer Media-Iicmen_US
dc.relation.ispartofJournal of Universal Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-Objective Clusteringen_US
dc.subjectNSGA-IIen_US
dc.subjecth-confidenceen_US
dc.titleThe Unification and Assessment of Multi-Objective Clustering Results of Categorical Datasets With H-Confidence Metricen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume18en_US
dc.identifier.issue4en_US
dc.identifier.startpage507en_US
dc.identifier.endpage531en_US
dc.identifier.wosWOS:000303600100004en_US
dc.identifier.scopus2-s2.0-84862601539en_US
dc.institutionauthorÖzyer, Tansel-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Dec 21, 2024

Page view(s)

68
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.