Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7638
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıç, Emrah-
dc.date.accessioned2021-09-11T15:58:27Z-
dc.date.available2021-09-11T15:58:27Z-
dc.date.issued2009en_US
dc.identifier.issn0960-0779-
dc.identifier.issn1873-2887-
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2007.09.081-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7638-
dc.description.abstractThe theory of generalized Pell p-numbers was introduced by Stakhov and then have been studied by several authors. In this paper. we consider the usual Pell numbers and as similar to the Fibonacci p-numbers, we give fair generalization of the Pell numbers, which we call the generalized Pell (p, i)-numbers for 0 <= i <= p. First we give relationships between the generalized Pell (p, i)-numbers and give the generating matrices for these numbers. Also we derive the generalized Binet formulas, sums, combinatorial representations and generating function of the generalized Pell p-numbers. Also using matrix methods, we derive all explicit formula for file sums of the generalized Fibonacci p-numbers. Finally, we derive relationships between generalized Pell (p, i)-numbers and their sums and permanents of certain matrices. (c) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleThe Generalized Pell (p, I)-Numbers and Their Binet Formulas, Combinatorial Representations, Sumsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume40en_US
dc.identifier.issue4en_US
dc.identifier.startpage2047en_US
dc.identifier.endpage2063en_US
dc.authorid0000-0003-0722-7382-
dc.identifier.wosWOS:000266653500044en_US
dc.identifier.scopus2-s2.0-65449183211en_US
dc.institutionauthorKılıç, Emrah-
dc.identifier.doi10.1016/j.chaos.2007.09.081-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

33
checked on Dec 21, 2024

Page view(s)

78
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.