Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7558
Title: | Support Vector Networks for Prediction of Floor Pressures in Shallow Cavity Flows | Authors: | Efe, Mehmet Önder Debiasi, Marco Yan, Peng Özbay, Hitay Samimy, Mohammad |
Keywords: | [No Keywords] | Publisher: | IEEE | Source: | IEEE International Conference on Control Applications -- OCT 04-06, 2006 -- Munich, GERMANY | Series/Report no.: | IEEE International Conference on Control Applications | Abstract: | During the last decade, Support Vector Machines (SVM) have proved to be very successful tools for classification and regression problems. The representational performance of this type of networks is studied on a cavity flow facility developed to investigate the characteristics of aerodynamic flows at various Mach numbers. Several test conditions have been experimented to collect a set of data, which is in the form of pressure readings from particular points in the test section. The goal is to develop a SVM. based model that emulates the one step ahead behavior of the flow measurement at the cavity floor. The SVM based model is built for a very limited amount of training data and the model is tested for an extended set of test conditions. A relative error is defined to measure the reconstruction performance, and the peak value of the FFT magnitude of the error is measured. The results indicate that the SVM based model is capable of matching the experimental data satisfactorily over the conditions that are close to the training data collection conditions, and the performance degrades as the Mach number gets away from the conditions considered during training. | URI: | https://hdl.handle.net/20.500.11851/7558 | ISBN: | 978-0-7803-9795-8 | ISSN: | 1085-1992 |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.