Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7557
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:57:49Z | - |
dc.date.available | 2021-09-11T15:57:49Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 0952-1976 | - |
dc.identifier.uri | https://doi.org/10.1016/j.engappai.2008.03.012 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7557 | - |
dc.description.abstract | The aim of this study is to evaluate the diagnostic accuracy of the support vector machines (SVMs) on the electrocardiogram (ECG) signals. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-BIH database. Post-ictal heart rate oscillations were studied in a heterogeneous group of patients with partial epilepsy. Decision making was performed in two stages: feature extraction by computing the wavelet coefficients and classification using the classifier trained on the extracted features. The purpose was to determine an optimum classification scheme for this problem, and also to infer clues about the extracted features. The present research demonstrated that the wavelet coefficients are the features, which well represent the ECG signals, and the SVMs trained on these features achieved high classification accuracies (total classification accuracy was 99.44%). (C) 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Engineering Applications of Artificial Intelligence | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Support vector machine (SVM) | en_US |
dc.subject | Wavelet coefficients | en_US |
dc.subject | Electrocardiogram (ECG) signals | en_US |
dc.subject | Post-ictal heart rate oscillations | en_US |
dc.subject | Partial epilepsy | en_US |
dc.title | Support Vector Machines for Detection of Electrocardiographic Changes in Partial Epileptic Patients | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 1196 | en_US |
dc.identifier.endpage | 1203 | en_US |
dc.identifier.wos | WOS:000261307500009 | en_US |
dc.identifier.scopus | 2-s2.0-54049114256 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.doi | 10.1016/j.engappai.2008.03.012 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
23
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
22
checked on Dec 21, 2024
Page view(s)
60
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.