Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7530
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcKeand, Austin M.-
dc.contributor.authorGörgülüarslan, Recep Muhammet-
dc.contributor.authorChoi, Seung-Kyum-
dc.date.accessioned2021-09-11T15:57:38Z-
dc.date.available2021-09-11T15:57:38Z-
dc.date.issued2021en_US
dc.identifier.issn0951-8320-
dc.identifier.issn1879-0836-
dc.identifier.urihttps://doi.org/10.1016/j.ress.2020.107258-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7530-
dc.description.abstractAn uncertainty quantification and validation framework is presented to account for both aleatory and epistemic uncertainties in stochastic simulations of turbine engine components. The spatial variability of the uncertain geometric parameters obtained from coordinate measuring machine data of manufactured parts is represented as aleatory uncertainty. Porosity and defects in the manufactured parts based on micro CT-scanned images are represented as epistemic uncertainty. A stochastic upscaling method and probability box approach are integrated to propagate both the epistemic and aleatory uncertainties from fine models to coarse models to quantify the homogenized elastic modulus uncertainties. The framework is applied for a turbine blade example and validated by modal frequency experiments of the manufactured blade samples. A validation approach, called mean curve validation method, is utilized to effectively compare the p-box of the predictions with the experimental results. The application results show that the proposed framework can significantly reduce the complexity of the engineering problem as well as produce accurate results when both aleatory and epistemic uncertainties exist in the problem.en_US
dc.description.sponsorshipNSF I/UCRC, USA [NSF-1822141]; OAI, USA [OAI-VATO2-17005]en_US
dc.description.sponsorshipThis work was partially supported by NSF I/UCRC, USA (NSF-1822141) and OAI, USA (OAI-VATO2-17005).en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofReliability Engineering & System Safetyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUncertainty quantificationen_US
dc.subjectStochastic upscalingen_US
dc.subjectValidationen_US
dc.subjectTurbine bladeen_US
dc.titleStochastic Analysis and Validation Under Aleatory and Epistemic Uncertaintiesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume205en_US
dc.identifier.wosWOS:000589091300041en_US
dc.identifier.scopus2-s2.0-85092525876en_US
dc.institutionauthorGörgülüarslan, Recep Muhammet-
dc.identifier.doi10.1016/j.ress.2020.107258-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

19
checked on Dec 21, 2024

Page view(s)

96
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.