Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7481
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltinisik, E.-
dc.contributor.authorSencar, H.T.-
dc.date.accessioned2021-09-11T15:57:18Z-
dc.date.available2021-09-11T15:57:18Z-
dc.date.issued2021-
dc.identifier.issn1556-6013-
dc.identifier.urihttps://doi.org/10.1109/TIFS.2020.3016830-
dc.description.abstractImage stabilization performed during imaging and/or post-processing poses one of the most significant challenges to photo-response non-uniformity based source camera attribution from videos. When performed digitally, stabilization involves cropping, warping, and inpainting of video frames to eliminate unwanted camera motion. Hence, successful attribution requires inversion of these transformations in a blind manner. To address this challenge, we introduce a source camera verification method for videos that takes into account spatially variant nature of stabilization transformations and assumes a larger degree of freedom in their search. Our method identifies transformations at a sub-frame level, incorporates a number of constraints to validate their correctness, and offers computational flexibility in the search for the correct transformation. The method also adopts a holistic approach in countering disruptive effects of other video generation steps, such as video coding and downsizing, for more reliable attribution. Tests performed on one public and two custom datasets show that the proposed method is able to verify the source of 23-30% of all videos that underwent stronger stabilization, depending on computation load, without a significant impact on false attribution. © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (116E273)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Information Forensics and Securityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPhoto-Response Non-Uniformity (Prnu)en_US
dc.subjectSource Camera Verificationen_US
dc.subjectStabilization Transformation Inversionen_US
dc.subjectStabilized Videoen_US
dc.titleSource Camera Verification for Strongly Stabilized Videosen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume16en_US
dc.identifier.startpage643en_US
dc.identifier.endpage657en_US
dc.authorid0000-0001-9300-6564-
dc.identifier.wosWOS:000571722500006-
dc.identifier.scopus2-s2.0-85100491779-
dc.institutionauthorSencar, Hüsrev Taha-
dc.identifier.doi10.1109/TIFS.2020.3016830-
dc.authorscopusid57205380729-
dc.authorscopusid8616233200-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Mar 29, 2025

WEB OF SCIENCETM
Citations

20
checked on Mar 4, 2025

Page view(s)

206
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.