Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7463
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:57:11Z-
dc.date.available2021-09-11T15:57:11Z-
dc.date.issued2008en_US
dc.identifier.issn0266-4720-
dc.identifier.issn1468-0394-
dc.identifier.urihttps://doi.org/10.1111/j.1468-0394.2008.00450.x-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7463-
dc.description.abstractFeatures are used to represent patterns with minimal loss of important information. The feature vector, which is composed of the set of all features used to describe a pattern, is a reduced-dimensional representation of that pattern. Medical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. By identifying a set of salient features, the noise in a classification model can be reduced, resulting in more accurate classification. In this study, a signal-to-noise ratio saliency measure was employed to determine the saliency of input features of recurrent neural networks (RNNs) used in classification of ophthalmic arterial Doppler signals. Eigenvector methods were used to extract features representing the ophthalmic arterial Doppler signals. The RNNs used in the ophthalmic arterial Doppler signal classification were trained for the signal-to-noise ratio screening method. The application results of the signal-to-noise ratio screening method to the ophthalmic arterial Doppler signals demonstrated that classification accuracies of RNNs with salient input features are higher than those of RNNs with salient and non-salient input features.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofExpert Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfeature saliencyen_US
dc.subjectsignal-to-noise ratioen_US
dc.subjecteigenvector methodsen_US
dc.subjectophthalmic arterial Doppler signal classificationen_US
dc.titleSignal-To Ratios for Measuring Saliency of Features Extracted by Eigenvector Methods From Ophthalmic Arterial Doppler Signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume25en_US
dc.identifier.issue5en_US
dc.identifier.startpage431en_US
dc.identifier.endpage443en_US
dc.identifier.wosWOS:000260256300001en_US
dc.identifier.scopus2-s2.0-54849438419en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1111/j.1468-0394.2008.00450.x-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

3
checked on Dec 21, 2024

Page view(s)

54
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.