Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:56:41Z-
dc.date.available2021-09-11T15:56:41Z-
dc.date.issued2008en_US
dc.identifier.issn0010-4825-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2008.01.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7375-
dc.description.abstractThe aim of this study is to evaluate the diagnostic accuracy of the recurrent neural networks (RNNs) with composite features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG) signals. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-BIH database. The multilayer perceptron neural networks (MLPNNs) were also tested and benchmarked for their performance on the classification of the ECG signals. Decision making was performed in two stages: computing composite features which were then input into the classifiers and classification using the classifiers trained with the Levenberg-Marquarch algorithm. The research demonstrated that the wavelet coefficients and the Lyapunov exponents are the features which well represent the ECG signals and the RNN trained on these features achieved high classification accuracies. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers In Biology And Medicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectrecurrent neural networks (RNNs)en_US
dc.subjectLevenberg-Marquardt algorithmen_US
dc.subjectcomposite featuresen_US
dc.subjectwavelet coefficientsen_US
dc.subjectLyapunov exponentsen_US
dc.subjectelectrocardiogram (ECG) signalsen_US
dc.titleRecurrent Neural Networks With Composite Features for Detection of Electrocardiographic Changes in Partial Epileptic Patientsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume38en_US
dc.identifier.issue3en_US
dc.identifier.startpage401en_US
dc.identifier.endpage410en_US
dc.identifier.wosWOS:000254733000012en_US
dc.identifier.scopus2-s2.0-39549123616en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid18275945en_US
dc.identifier.doi10.1016/j.compbiomed.2008.01.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

14
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

14
checked on Dec 21, 2024

Page view(s)

44
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.