Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7339
Title: Quadratic Forms of Codimension 2 Over Certain Finite Fields of Even Characteristic
Authors: Özbudak, Ferruh
Saygı, Elif
Saygı, Zülfükar
Keywords: Artin-Schreier type curve
Quadratic form
Maximal curve
Publisher: Springer
Abstract: Let F-q be a finite field of characteristic 2, not containing F-4. Let k >= 2 be an even integer. We give a full classification of quadratic forms over F-q(k) of codimension 2 provided that certain three coefficients are from F-4. We apply this to the classification of maximal and minimal curves over finite fields.
URI: https://doi.org/10.1007/s12095-011-0051-5
https://hdl.handle.net/20.500.11851/7339
ISSN: 1936-2447
1936-2455
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

5
checked on Dec 21, 2024

Page view(s)

100
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.