Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7328
Title: Properties of Fuzzy Statistical Limits
Authors: Burgin, Mark
Duman, Oktay
Keywords: Statistical convergence
fuzzy sets
fuzzy limits
statistics
mean
standard deviation
fuzzy convergence
fuzzy density
Publisher: Ios Press
Abstract: Statistical convergence was introduced in connection with problems of series summation. Only later it was demonstrated that statistical convergence is closely related to convergence of the main statistical characteristics. Statistical limits are defined relaxing conditions on conventional convergence. The main idea of the statistical convergence of a sequence l is that the majority of elements from l converge and we do not care what is going on with other elements. At the same time, it is known that sequences that come from real life sources, such as measurement and computation, do not allow, in a general case, to test whether they converge or statistically converge in the strict mathematical sense. To overcome these limitations, fuzzy convergence was introduced earlier in the context of neoclassical analysis and fuzzy statistical convergence is introduced and studied in this paper. We find relations between fuzzy statistical convergence of a sequence and fuzzy statistical convergence of its subsequences (Theorem 2.1), as well as between fuzzy statistical convergence of a sequence and conventional convergence of its subsequences (Theorem 2.2). It is demonstrated what operations with fuzzy statistical limits are induced by operations on sequences (Theorem 2.3) and how fuzzy statistical limits of different sequences influence one another (Theorem 2.4). In Section 3, relations between fuzzy statistical convergence and fuzzy convergence of statistical characteristics, such as the mean (average) and standard deviation, are studied (Theorems 3.1 and 3.2).
URI: https://hdl.handle.net/20.500.11851/7328
ISSN: 1064-1246
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Dec 21, 2024

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.