Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7304
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖgüt, Hulisi-
dc.contributor.authorAktaş, Ramazan-
dc.contributor.authorAlp, Ali-
dc.contributor.authorDoğanay, M. Mete-
dc.date.accessioned2021-09-11T15:56:20Z-
dc.date.available2021-09-11T15:56:20Z-
dc.date.issued2009-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2008.06.055-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7304-
dc.description.abstractDifferent methods have been used to predict financial information manipulation that can be defined as the distortion of the information in the financial statements. The purpose of this paper is to predict financial information manipulation by using support vector machine (SVM) and probabilistic neural network (PNN). A number of financial ratios are used as explanatory variables. Test performance of classification accuracy, sensitivity and specificity statistics for PNN and SVM are compared with the results of discriminant analysis, logistics regression (logit), and probit classifiers, which have been used in other studies. We have found that the performance of SVM and PNN are higher than that of the other classifiers analyzed before. Thus, both classifiers can be used as automated decision support system for the detection of financial information manipulation. (C) 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinancial information manipulationen_US
dc.subjectSupport vector machineen_US
dc.subjectProbabilistic neural networken_US
dc.titlePrediction of Financial Information Manipulation by Using Support Vector Machine and Probabilistic Neural Networken_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Economics and Administrative Sciences, Department of Managementen_US
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümüen_US
dc.identifier.volume36en_US
dc.identifier.issue3en_US
dc.identifier.startpage5419en_US
dc.identifier.endpage5423en_US
dc.identifier.wosWOS:000263584100154-
dc.identifier.scopus2-s2.0-58349094308-
dc.institutionauthorAktaş, Ramazan-
dc.institutionauthorAlp, Dursun Ali-
dc.identifier.doi10.1016/j.eswa.2008.06.055-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept04.03. Department of Management-
Appears in Collections:İşletme Bölümü / Department of Management
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

26
checked on Mar 29, 2025

WEB OF SCIENCETM
Citations

18
checked on Mar 15, 2025

Page view(s)

148
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.