Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7303
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKasnakoğlu, Coşku-
dc.contributor.authorEfe, Mehmet Önder-
dc.date.accessioned2021-09-11T15:56:20Z-
dc.date.available2021-09-11T15:56:20Z-
dc.date.issued2008en_US
dc.identifier.citationInternational Conference on Control, Automation and Systems -- OCT 14-17, 2008 -- Seoul, SOUTH KOREAen_US
dc.identifier.isbn978-89-950038-9-3-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7303-
dc.description.abstractIn this paper we study various computationally intelligent architectures for prediction of pressure values and velocity components of flow past a three-element airfoil. Six sensor locations are selected around the airfoil and the goal is to predict the flow behavior at the rear of the airfoil using pressure readings from the remaining five sensors. To make the problem more interesting we require the predictor to estimate the flow twenty time steps ahead of current time. Data is collected from CFD simulations of the flow and predictors are built using four different computationally intelligent architectures: Multilayer Perceptron (MLP), Adaptive Neuro Fuzzy Inference System (ANFIS), Radial Basis Function Neural Network (RBFNN), and Least Squares Support Vector Machine (LS-SVM). Levenberg-Marquardt optimization technique is utilized for parameter tuning purposes. In addition, a simple linear predictor is built as a benchmark for comparing the MLP, ANFIS, RBFNN, and LS-SVM based predictors. It is observed that MLP and ANFIS based predictors achieve the best prediction, and the performace of all predictors are superior to that of the simple linear predictor.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2008 International Conference On Control, Automation And Systems, Vols 1-4en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcomputational intelligenceen_US
dc.subjectartificial neural networksen_US
dc.subjectair flowen_US
dc.subjectNavier-Stokesen_US
dc.subjectNSen_US
dc.subjectairfoilen_US
dc.subjectpressure predictionen_US
dc.subjectvelocity predictionen_US
dc.subjectmultilayer perceptronen_US
dc.subjectMLPen_US
dc.subjectadaptive neuro fuzzy inference systemen_US
dc.subjectANFISen_US
dc.subjectradial Basis function neural networken_US
dc.subjectRBFNNen_US
dc.subjectleast squares support vector machineen_US
dc.subjectLS-SVMen_US
dc.titlePrediction of Dynamical Properties of Flow Over a Three-Element Airfoil Via Computationally Intelligent Architecturesen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage344en_US
dc.identifier.endpage349en_US
dc.authorid0000-0002-5992-895X-
dc.identifier.wosWOS:000266771500066en_US
dc.identifier.scopus2-s2.0-58149101666en_US
dc.institutionauthorKasnakoğlu, Coşku-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conferenceInternational Conference on Control, Automation and Systemsen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

50
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.