Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7303
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kasnakoğlu, Coşku | - |
dc.contributor.author | Efe, Mehmet Önder | - |
dc.date.accessioned | 2021-09-11T15:56:20Z | - |
dc.date.available | 2021-09-11T15:56:20Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | International Conference on Control, Automation and Systems -- OCT 14-17, 2008 -- Seoul, SOUTH KOREA | en_US |
dc.identifier.isbn | 978-89-950038-9-3 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7303 | - |
dc.description.abstract | In this paper we study various computationally intelligent architectures for prediction of pressure values and velocity components of flow past a three-element airfoil. Six sensor locations are selected around the airfoil and the goal is to predict the flow behavior at the rear of the airfoil using pressure readings from the remaining five sensors. To make the problem more interesting we require the predictor to estimate the flow twenty time steps ahead of current time. Data is collected from CFD simulations of the flow and predictors are built using four different computationally intelligent architectures: Multilayer Perceptron (MLP), Adaptive Neuro Fuzzy Inference System (ANFIS), Radial Basis Function Neural Network (RBFNN), and Least Squares Support Vector Machine (LS-SVM). Levenberg-Marquardt optimization technique is utilized for parameter tuning purposes. In addition, a simple linear predictor is built as a benchmark for comparing the MLP, ANFIS, RBFNN, and LS-SVM based predictors. It is observed that MLP and ANFIS based predictors achieve the best prediction, and the performace of all predictors are superior to that of the simple linear predictor. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2008 International Conference On Control, Automation And Systems, Vols 1-4 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | computational intelligence | en_US |
dc.subject | artificial neural networks | en_US |
dc.subject | air flow | en_US |
dc.subject | Navier-Stokes | en_US |
dc.subject | NS | en_US |
dc.subject | airfoil | en_US |
dc.subject | pressure prediction | en_US |
dc.subject | velocity prediction | en_US |
dc.subject | multilayer perceptron | en_US |
dc.subject | MLP | en_US |
dc.subject | adaptive neuro fuzzy inference system | en_US |
dc.subject | ANFIS | en_US |
dc.subject | radial Basis function neural network | en_US |
dc.subject | RBFNN | en_US |
dc.subject | least squares support vector machine | en_US |
dc.subject | LS-SVM | en_US |
dc.title | Prediction of Dynamical Properties of Flow Over a Three-Element Airfoil Via Computationally Intelligent Architectures | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 344 | en_US |
dc.identifier.endpage | 349 | en_US |
dc.authorid | 0000-0002-5992-895X | - |
dc.identifier.wos | WOS:000266771500066 | en_US |
dc.identifier.scopus | 2-s2.0-58149101666 | en_US |
dc.institutionauthor | Kasnakoğlu, Coşku | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | International Conference on Control, Automation and Systems | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
crisitem.author.dept | 02.5. Department of Electrical and Electronics Engineering | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.