Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7191
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelik, S. | - |
dc.contributor.author | Andersen, R. G. | - |
dc.contributor.author | Tekoğlu, C. | - |
dc.contributor.author | Nielsen, K. L. | - |
dc.date.accessioned | 2021-09-11T15:55:55Z | - |
dc.date.available | 2021-09-11T15:55:55Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 0376-9429 | - |
dc.identifier.issn | 1573-2673 | - |
dc.identifier.uri | https://doi.org/10.1007/s10704-020-00513-8 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7191 | - |
dc.description.abstract | The two distinct tearing mechanisms observed in ductile metal plates are the void-by-void advance of the crack tip, and the simultaneous interaction of multiple voids on the plane ahead of the crack tip. Void-by-void crack advance, which leads to a cup-cup crack surface morphology, is the dominant mechanism if the plate contains a low number of small void nucleation sites (i.e., second phase particles). Conversely, a large number and/or size of nucleation sites trigger the simultaneous interaction of multiple voids resulting in a slanted crack. The present work aims to provide further insight into the parameters controlling the mechanisms and energy dissipation of plate tearing by focusing on the shape and, thereby, the orientation of the nucleation sites. The study uses a two-dimensional plane strain finite element domain to model the cross section of a plate, subject to mode I tearing, with discretely modeled, randomly distributed, finite-sized elliptic void nucleation sites. The developed finite element setup can capture the dependence of the crack surface morphology on the microstructure of the plate. The simulation results confirm that cup-cup crack propagation develops by intense plastic straining throughout the thinning region of the plate. Conversely, slanted and cup-cone cracks propagate in thin localized shear deformation bands. The energy dissipation is, therefore, greater for cup-cup cracks. The study demonstrates that the damage-related microstructure has a significant role in determining the overall hardening capacity of a plate, which in turn dictates the tearing mode and energy. | en_US |
dc.description.sponsorship | TuBTAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [315M133]; Department of Mechanical Engineering at the Technical University of Denmark; Independent Research Fund Denmark [DFF-7017-00121, 0136-00194B] | en_US |
dc.description.sponsorship | The authors gratefully acknowledge the financial support by TuBTAK (Project No: 315M133). RGA is financially supported by the Department of Mechanical Engineering at the Technical University of Denmark in the project "Advancing Numerical Analysis of Large Scale Crack Propagation in Plate Structures". KLN is financially supported by Independent Research Fund Denmark, partly, in the project "Advanced Damage Models with InTrinsic Size Effects" (Grant no: DFF-7017-00121), and, partly, in the project "Why, Where and When metals fail" (Grant no: 0136-00194B). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | International Journal of Fracture | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Ductile failure | en_US |
dc.subject | Gurson model | en_US |
dc.subject | Void interaction | en_US |
dc.subject | Size effect | en_US |
dc.subject | Shape effect | en_US |
dc.title | On the Dependence of Crack Surface Morphology and Energy Dissipation on Microstructure in Ductile Plate Tearing | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Mechanical Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | tr_TR |
dc.authorid | 0000-0001-7383-3909 | - |
dc.authorid | 0000-0002-0502-8008 | - |
dc.identifier.wos | WOS:000619904700001 | en_US |
dc.identifier.scopus | 2-s2.0-85101260518 | en_US |
dc.institutionauthor | Tekoğlu, Cihan | - |
dc.identifier.doi | 10.1007/s10704-020-00513-8 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.7. Department of Mechanical Engineering | - |
Appears in Collections: | Makine Mühendisliği Bölümü / Department of Mechanical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
6
checked on Nov 2, 2024
Page view(s)
46
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.