Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7170
Title: Obstructive Sleep Apnea Prediction From Electrocardiogram Scalograms and Spectrograms Using Convolutional Neural Networks
Authors: Nasifoğlu, Hüseyin
Eroğul, Osman
Keywords: prediction
obstructive sleep apnea (OSA)
electrocardiogram (ECG)
scalogram
spectrogram
convolutional neural network (CNN)
Publisher: IOP Publishing Ltd
Abstract: Objective. In this study, we conducted a comparative analysis of deep convolutional neural network (CNN) models in predicting obstructive sleep apnea (OSA) using electrocardiograms. Unlike other studies in the literature, this study automatically extracts time-frequency features by using CNNs instead of manual feature extraction from ECG recordings. Approach. The proposed model generates scalogram and spectrogram representations by transforming preprocessed 30 s ECG segments from time domain to the frequency domain using continuous wavelet transform and short time Fourier transform, respectively. We examined AlexNet, GoogleNet and ResNet18 models in predicting OSA events. The effect of transfer learning on success is also investigated. Based on the observed results, we proposed a new model that is found more effective in estimation. In total, 152 ECG recordings were included in the study for training and evaluation of the models. Main results. The prediction using scalograms immediately 30 s before potential OSA onsets gave the best performance with 82.30% accuracy, 83.22% sensitivity, 82.27% specificity and 82.95% positive predictive value. The prediction using spectrograms also achieved up to 80.13% accuracy and 81.99% sensitivity on prediction. Per-recording classification suggested considerable results with 91.93% accuracy for prediction of OSA events. Significance. Time-frequency deep features of scalograms and spectrograms of ECG segments prior to OSA events provided reliable information about the possible events in the future. The proposed CNN model can be used as a good indicator to accurately predict OSA events using ECG recordings.
URI: https://doi.org/10.1088/1361-6579/ac0a9c
https://hdl.handle.net/20.500.11851/7170
ISSN: 0967-3334
1361-6579
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 2, 2024

Page view(s)

114
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.