Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7143
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cohen, Kelly | - |
dc.contributor.author | Siegel, Stefan | - |
dc.contributor.author | Seidel, Juergen | - |
dc.contributor.author | Aradağ, Selin | - |
dc.contributor.author | McLaughlin, Thomas | - |
dc.date.accessioned | 2021-09-11T15:55:47Z | - |
dc.date.available | 2021-09-11T15:55:47Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.issn | 1873-6793 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2011.07.135 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7143 | - |
dc.description.abstract | Feedback flow control of the wake of a circular cylinder at a Reynolds number of 100 is an interesting and challenging benchmark for controlling absolute instabilities associated with bluff body wakes. A two dimensional computational fluid dynamics simulation is used to develop low-dimensional models for estimator design. Actuation is implemented as displacement of the cylinder normal to the flow. The estimation approach uses a low dimensional model based on a truncated 6 mode Double Proper Orthogonal Decomposition (DPOD) applied to the streamwise velocity component of the flow field. Sensor placement is based on the intensity of the resulting spatial modes. A non-linear Artificial Neural Network Estimator (ANNE) was employed to map the velocity data to the mode amplitudes of the DPOD model. For a given four sensor configuration, developed using a previously validated strategy, ANNE performed better than two state-of-the-art approaches, namely, a Quadratic Stochastic Estimator (QSE) and a Linear Stochastic Estimator with time delays (DSE). (C) 2011 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | AFOSRUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR); AFRLUnited States Department of DefenseUS Air Force Research Laboratory | en_US |
dc.description.sponsorship | The authors thank Lt. Col. Scott Wells, Lt. Col. Sharon Heise (AFOSR), and Dr. James Myatt (AFRL) for their support and assistance. The authors acknowledge the assistance of Dr. Jim Forsythe of Cobalt Solutions, LLC and Dr. Young Sug-Shin of Agency for Defense Development (ADD), South Korea. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Expert Systems With Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Turbulent cylinder wake | en_US |
dc.subject | ANNE | en_US |
dc.subject | Low dimensional modeling | en_US |
dc.subject | DPOD | en_US |
dc.subject | Flow control | en_US |
dc.title | Nonlinear Estimation of Transient Flow Field Low Dimensional States Using Artificial Neural Nets | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Mechanical Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 39 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 1264 | en_US |
dc.identifier.endpage | 1272 | en_US |
dc.authorid | 0000-0002-8655-1465 | - |
dc.authorid | 0000-0002-2034-0008 | - |
dc.identifier.wos | WOS:000296214900132 | en_US |
dc.identifier.scopus | 2-s2.0-81855208944 | en_US |
dc.institutionauthor | Aradağ, Selin | - |
dc.identifier.doi | 10.1016/j.eswa.2011.07.135 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Makine Mühendisliği Bölümü / Department of Mechanical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
9
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
10
checked on Oct 26, 2024
Page view(s)
52
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.