Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7137
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:55:47Z-
dc.date.available2021-09-11T15:55:47Z-
dc.date.issued2010en_US
dc.identifier.issn1051-2004-
dc.identifier.issn1095-4333-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2009.05.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7137-
dc.description.abstractAdaptive noise cancellation using adaptive neuro-fuzzy inference system (ANFIS) is proposed for denoising Doppler ultrasound signals. Doppler ultrasound technology has been widely used in the clinic to diagnose vascular diseases for its noninvasive advantage. Therefore, the improvement in the flow velocity estimation performed by Doppler ultrasound blood measurement systems is important in vascular diseases diagnosis. The Doppler ultrasound signals were modeled as the summation of the true velocity signal, a wall motion signal, a clutter signal, and a random noise component. The ophthalmic arterial (OA) Doppler signals recorded from the healthy subjects and subjects suffering from the OA stenosis were used as the test sources. The signal-to-noise ratio (SNR) improvements were studied for the OA Doppler signals. Based on the results (SNR improvements and root mean square - RMS error) of the experiments, it was concluded that the performance of the proposed method is higher than that of the existing methods in the literature for denoising the Doppler ultrasound signals. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive noise cancellationen_US
dc.subjectAdaptive neuro-fuzzy inference system (ANFIS)en_US
dc.subjectSignal-to-noise ratio (SNR)en_US
dc.subjectDoppler ultrasound signalsen_US
dc.titleNoise Cancellation in Doppler Ultrasound Signals With Adaptive Neuro-Fuzzy Inference Systemen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume20en_US
dc.identifier.issue1en_US
dc.identifier.startpage63en_US
dc.identifier.endpage76en_US
dc.identifier.wosWOS:000272437900007en_US
dc.identifier.scopus2-s2.0-71649113979en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.dsp.2009.05.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

10
checked on Oct 26, 2024

Page view(s)

86
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.